Merge from vendor branch LIBSTDC++:
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.12 2003/11/11 01:35:36 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 #define MSYNC_FLUSH_HARDSEQ     0x01
98 #define MSYNC_FLUSH_SOFTSEQ     0x02
99
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103
104 static void     vm_object_qcollapse (vm_object_t object);
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106
107 /*
108  *      Virtual memory objects maintain the actual data
109  *      associated with allocated virtual memory.  A given
110  *      page of memory exists within exactly one object.
111  *
112  *      An object is only deallocated when all "references"
113  *      are given up.  Only one "reference" to a given
114  *      region of an object should be writeable.
115  *
116  *      Associated with each object is a list of all resident
117  *      memory pages belonging to that object; this list is
118  *      maintained by the "vm_page" module, and locked by the object's
119  *      lock.
120  *
121  *      Each object also records a "pager" routine which is
122  *      used to retrieve (and store) pages to the proper backing
123  *      storage.  In addition, objects may be backed by other
124  *      objects from which they were virtual-copied.
125  *
126  *      The only items within the object structure which are
127  *      modified after time of creation are:
128  *              reference count         locked by object's lock
129  *              pager routine           locked by object's lock
130  *
131  */
132
133 struct object_q vm_object_list;
134 static struct lwkt_token vm_object_list_token;
135 static long vm_object_count;            /* count of all objects */
136 vm_object_t kernel_object;
137 vm_object_t kmem_object;
138 static struct vm_object kernel_object_store;
139 static struct vm_object kmem_object_store;
140 extern int vm_pageout_page_count;
141
142 static long object_collapses;
143 static long object_bypasses;
144 static int next_index;
145 static vm_zone_t obj_zone;
146 static struct vm_zone obj_zone_store;
147 static int object_hash_rand;
148 #define VM_OBJECTS_INIT 256
149 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
150
151 void
152 _vm_object_allocate(type, size, object)
153         objtype_t type;
154         vm_size_t size;
155         vm_object_t object;
156 {
157         int incr;
158         TAILQ_INIT(&object->memq);
159         LIST_INIT(&object->shadow_head);
160
161         object->type = type;
162         object->size = size;
163         object->ref_count = 1;
164         object->flags = 0;
165         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
166                 vm_object_set_flag(object, OBJ_ONEMAPPING);
167         object->paging_in_progress = 0;
168         object->resident_page_count = 0;
169         object->shadow_count = 0;
170         object->pg_color = next_index;
171         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
172                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
173         else
174                 incr = size;
175         next_index = (next_index + incr) & PQ_L2_MASK;
176         object->handle = NULL;
177         object->backing_object = NULL;
178         object->backing_object_offset = (vm_ooffset_t) 0;
179         /*
180          * Try to generate a number that will spread objects out in the
181          * hash table.  We 'wipe' new objects across the hash in 128 page
182          * increments plus 1 more to offset it a little more by the time
183          * it wraps around.
184          */
185         object->hash_rand = object_hash_rand - 129;
186
187         object->generation++;
188
189         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
190         vm_object_count++;
191         object_hash_rand = object->hash_rand;
192 }
193
194 /*
195  *      vm_object_init:
196  *
197  *      Initialize the VM objects module.
198  */
199 void
200 vm_object_init()
201 {
202         TAILQ_INIT(&vm_object_list);
203         lwkt_inittoken(&vm_object_list_token);
204         vm_object_count = 0;
205         
206         kernel_object = &kernel_object_store;
207         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
208             kernel_object);
209
210         kmem_object = &kmem_object_store;
211         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
212             kmem_object);
213
214         obj_zone = &obj_zone_store;
215         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
216                 vm_objects_init, VM_OBJECTS_INIT);
217 }
218
219 void
220 vm_object_init2() 
221 {
222         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
223 }
224
225 /*
226  *      vm_object_allocate:
227  *
228  *      Returns a new object with the given size.
229  */
230
231 vm_object_t
232 vm_object_allocate(type, size)
233         objtype_t type;
234         vm_size_t size;
235 {
236         vm_object_t result;
237
238         result = (vm_object_t) zalloc(obj_zone);
239
240         _vm_object_allocate(type, size, result);
241
242         return (result);
243 }
244
245
246 /*
247  *      vm_object_reference:
248  *
249  *      Gets another reference to the given object.
250  */
251 void
252 vm_object_reference(object)
253         vm_object_t object;
254 {
255         if (object == NULL)
256                 return;
257
258 #if 0
259         /* object can be re-referenced during final cleaning */
260         KASSERT(!(object->flags & OBJ_DEAD),
261             ("vm_object_reference: attempting to reference dead obj"));
262 #endif
263
264         object->ref_count++;
265         if (object->type == OBJT_VNODE) {
266                 while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curthread)) {
267                         printf("vm_object_reference: delay in getting object\n");
268                 }
269         }
270 }
271
272 void
273 vm_object_vndeallocate(object)
274         vm_object_t object;
275 {
276         struct vnode *vp = (struct vnode *) object->handle;
277
278         KASSERT(object->type == OBJT_VNODE,
279             ("vm_object_vndeallocate: not a vnode object"));
280         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
281 #ifdef INVARIANTS
282         if (object->ref_count == 0) {
283                 vprint("vm_object_vndeallocate", vp);
284                 panic("vm_object_vndeallocate: bad object reference count");
285         }
286 #endif
287
288         object->ref_count--;
289         if (object->ref_count == 0) {
290                 vp->v_flag &= ~VTEXT;
291                 vm_object_clear_flag(object, OBJ_OPT);
292         }
293         vrele(vp);
294 }
295
296 /*
297  *      vm_object_deallocate:
298  *
299  *      Release a reference to the specified object,
300  *      gained either through a vm_object_allocate
301  *      or a vm_object_reference call.  When all references
302  *      are gone, storage associated with this object
303  *      may be relinquished.
304  *
305  *      No object may be locked.
306  */
307 void
308 vm_object_deallocate(object)
309         vm_object_t object;
310 {
311         vm_object_t temp;
312
313         while (object != NULL) {
314
315                 if (object->type == OBJT_VNODE) {
316                         vm_object_vndeallocate(object);
317                         return;
318                 }
319
320                 if (object->ref_count == 0) {
321                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
322                 } else if (object->ref_count > 2) {
323                         object->ref_count--;
324                         return;
325                 }
326
327                 /*
328                  * Here on ref_count of one or two, which are special cases for
329                  * objects.
330                  */
331                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
332                         vm_object_set_flag(object, OBJ_ONEMAPPING);
333                         object->ref_count--;
334                         return;
335                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
336                         object->ref_count--;
337                         if ((object->handle == NULL) &&
338                             (object->type == OBJT_DEFAULT ||
339                              object->type == OBJT_SWAP)) {
340                                 vm_object_t robject;
341
342                                 robject = LIST_FIRST(&object->shadow_head);
343                                 KASSERT(robject != NULL,
344                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
345                                          object->ref_count,
346                                          object->shadow_count));
347                                 if ((robject->handle == NULL) &&
348                                     (robject->type == OBJT_DEFAULT ||
349                                      robject->type == OBJT_SWAP)) {
350
351                                         robject->ref_count++;
352
353                                         while (
354                                                 robject->paging_in_progress ||
355                                                 object->paging_in_progress
356                                         ) {
357                                                 vm_object_pip_sleep(robject, "objde1");
358                                                 vm_object_pip_sleep(object, "objde2");
359                                         }
360
361                                         if (robject->ref_count == 1) {
362                                                 robject->ref_count--;
363                                                 object = robject;
364                                                 goto doterm;
365                                         }
366
367                                         object = robject;
368                                         vm_object_collapse(object);
369                                         continue;
370                                 }
371                         }
372
373                         return;
374
375                 } else {
376                         object->ref_count--;
377                         if (object->ref_count != 0)
378                                 return;
379                 }
380
381 doterm:
382
383                 temp = object->backing_object;
384                 if (temp) {
385                         LIST_REMOVE(object, shadow_list);
386                         temp->shadow_count--;
387                         if (temp->ref_count == 0)
388                                 vm_object_clear_flag(temp, OBJ_OPT);
389                         temp->generation++;
390                         object->backing_object = NULL;
391                 }
392
393                 /*
394                  * Don't double-terminate, we could be in a termination
395                  * recursion due to the terminate having to sync data
396                  * to disk.
397                  */
398                 if ((object->flags & OBJ_DEAD) == 0)
399                         vm_object_terminate(object);
400                 object = temp;
401         }
402 }
403
404 /*
405  *      vm_object_terminate actually destroys the specified object, freeing
406  *      up all previously used resources.
407  *
408  *      The object must be locked.
409  *      This routine may block.
410  */
411 void
412 vm_object_terminate(object)
413         vm_object_t object;
414 {
415         vm_page_t p;
416         int s;
417
418         /*
419          * Make sure no one uses us.
420          */
421         vm_object_set_flag(object, OBJ_DEAD);
422
423         /*
424          * wait for the pageout daemon to be done with the object
425          */
426         vm_object_pip_wait(object, "objtrm");
427
428         KASSERT(!object->paging_in_progress,
429                 ("vm_object_terminate: pageout in progress"));
430
431         /*
432          * Clean and free the pages, as appropriate. All references to the
433          * object are gone, so we don't need to lock it.
434          */
435         if (object->type == OBJT_VNODE) {
436                 struct vnode *vp;
437
438                 /*
439                  * Freeze optimized copies.
440                  */
441                 vm_freeze_copyopts(object, 0, object->size);
442
443                 /*
444                  * Clean pages and flush buffers.
445                  */
446                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
447
448                 vp = (struct vnode *) object->handle;
449                 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
450         }
451
452         /*
453          * Wait for any I/O to complete, after which there had better not
454          * be any references left on the object.
455          */
456         vm_object_pip_wait(object, "objtrm");
457
458         if (object->ref_count != 0)
459                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
460
461         /*
462          * Now free any remaining pages. For internal objects, this also
463          * removes them from paging queues. Don't free wired pages, just
464          * remove them from the object. 
465          */
466         s = splvm();
467         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
468                 if (p->busy || (p->flags & PG_BUSY))
469                         panic("vm_object_terminate: freeing busy page %p\n", p);
470                 if (p->wire_count == 0) {
471                         vm_page_busy(p);
472                         vm_page_free(p);
473                         mycpu->gd_cnt.v_pfree++;
474                 } else {
475                         vm_page_busy(p);
476                         vm_page_remove(p);
477                 }
478         }
479         splx(s);
480
481         /*
482          * Let the pager know object is dead.
483          */
484         vm_pager_deallocate(object);
485
486         /*
487          * Remove the object from the global object list.
488          */
489         lwkt_gettoken(&vm_object_list_token);
490         TAILQ_REMOVE(&vm_object_list, object, object_list);
491         lwkt_reltoken(&vm_object_list_token);
492
493         wakeup(object);
494
495         /*
496          * Free the space for the object.
497          */
498         zfree(obj_zone, object);
499 }
500
501 /*
502  *      vm_object_page_clean
503  *
504  *      Clean all dirty pages in the specified range of object.  Leaves page 
505  *      on whatever queue it is currently on.   If NOSYNC is set then do not
506  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
507  *      leaving the object dirty.
508  *
509  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
510  *      synchronous clustering mode implementation.
511  *
512  *      Odd semantics: if start == end, we clean everything.
513  *
514  *      The object must be locked.
515  */
516
517 void
518 vm_object_page_clean(object, start, end, flags)
519         vm_object_t object;
520         vm_pindex_t start;
521         vm_pindex_t end;
522         int flags;
523 {
524         vm_page_t p, np;
525         vm_offset_t tstart, tend;
526         vm_pindex_t pi;
527         struct vnode *vp;
528         int clearobjflags;
529         int pagerflags;
530         int curgeneration;
531
532         if (object->type != OBJT_VNODE ||
533                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
534                 return;
535
536         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
537         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
538
539         vp = object->handle;
540
541         vm_object_set_flag(object, OBJ_CLEANING);
542
543         /*
544          * Handle 'entire object' case
545          */
546         tstart = start;
547         if (end == 0) {
548                 tend = object->size;
549         } else {
550                 tend = end;
551         }
552
553         /*
554          * If the caller is smart and only msync()s a range he knows is
555          * dirty, we may be able to avoid an object scan.  This results in
556          * a phenominal improvement in performance.  We cannot do this
557          * as a matter of course because the object may be huge - e.g.
558          * the size might be in the gigabytes or terrabytes.
559          */
560         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
561                 vm_offset_t tscan;
562                 int scanlimit;
563                 int scanreset;
564
565                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
566                 if (scanreset < 16)
567                         scanreset = 16;
568                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
569
570                 scanlimit = scanreset;
571                 tscan = tstart;
572                 while (tscan < tend) {
573                         curgeneration = object->generation;
574                         p = vm_page_lookup(object, tscan);
575                         if (p == NULL || p->valid == 0 ||
576                             (p->queue - p->pc) == PQ_CACHE) {
577                                 if (--scanlimit == 0)
578                                         break;
579                                 ++tscan;
580                                 continue;
581                         }
582                         vm_page_test_dirty(p);
583                         if ((p->dirty & p->valid) == 0) {
584                                 if (--scanlimit == 0)
585                                         break;
586                                 ++tscan;
587                                 continue;
588                         }
589                         /*
590                          * If we have been asked to skip nosync pages and 
591                          * this is a nosync page, we can't continue.
592                          */
593                         if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
594                                 if (--scanlimit == 0)
595                                         break;
596                                 ++tscan;
597                                 continue;
598                         }
599                         scanlimit = scanreset;
600
601                         /*
602                          * This returns 0 if it was unable to busy the first
603                          * page (i.e. had to sleep).
604                          */
605                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
606                 }
607
608                 /*
609                  * If everything was dirty and we flushed it successfully,
610                  * and the requested range is not the entire object, we
611                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
612                  * return immediately.
613                  */
614                 if (tscan >= tend && (tstart || tend < object->size)) {
615                         vm_object_clear_flag(object, OBJ_CLEANING);
616                         return;
617                 }
618                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
619         }
620
621         /*
622          * Generally set CLEANCHK interlock and make the page read-only so
623          * we can then clear the object flags.
624          *
625          * However, if this is a nosync mmap then the object is likely to 
626          * stay dirty so do not mess with the page and do not clear the
627          * object flags.
628          */
629
630         clearobjflags = 1;
631
632         for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
633                 vm_page_flag_set(p, PG_CLEANCHK);
634                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
635                         clearobjflags = 0;
636                 else
637                         vm_page_protect(p, VM_PROT_READ);
638         }
639
640         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
641                 struct vnode *vp;
642
643                 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
644                 if (object->type == OBJT_VNODE &&
645                     (vp = (struct vnode *)object->handle) != NULL) {
646                         if (vp->v_flag & VOBJDIRTY) {
647                                 lwkt_gettoken(&vp->v_interlock);
648                                 vp->v_flag &= ~VOBJDIRTY;
649                                 lwkt_reltoken(&vp->v_interlock);
650                         }
651                 }
652         }
653
654 rescan:
655         curgeneration = object->generation;
656
657         for(p = TAILQ_FIRST(&object->memq); p; p = np) {
658                 int n;
659
660                 np = TAILQ_NEXT(p, listq);
661
662 again:
663                 pi = p->pindex;
664                 if (((p->flags & PG_CLEANCHK) == 0) ||
665                         (pi < tstart) || (pi >= tend) ||
666                         (p->valid == 0) ||
667                         ((p->queue - p->pc) == PQ_CACHE)) {
668                         vm_page_flag_clear(p, PG_CLEANCHK);
669                         continue;
670                 }
671
672                 vm_page_test_dirty(p);
673                 if ((p->dirty & p->valid) == 0) {
674                         vm_page_flag_clear(p, PG_CLEANCHK);
675                         continue;
676                 }
677
678                 /*
679                  * If we have been asked to skip nosync pages and this is a
680                  * nosync page, skip it.  Note that the object flags were
681                  * not cleared in this case so we do not have to set them.
682                  */
683                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
684                         vm_page_flag_clear(p, PG_CLEANCHK);
685                         continue;
686                 }
687
688                 n = vm_object_page_collect_flush(object, p,
689                         curgeneration, pagerflags);
690                 if (n == 0)
691                         goto rescan;
692                 if (object->generation != curgeneration)
693                         goto rescan;
694
695                 /*
696                  * Try to optimize the next page.  If we can't we pick up
697                  * our (random) scan where we left off.
698                  */
699                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
700                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
701                                 goto again;
702                 }
703         }
704
705 #if 0
706         VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
707 #endif
708
709         vm_object_clear_flag(object, OBJ_CLEANING);
710         return;
711 }
712
713 static int
714 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
715 {
716         int runlen;
717         int s;
718         int maxf;
719         int chkb;
720         int maxb;
721         int i;
722         vm_pindex_t pi;
723         vm_page_t maf[vm_pageout_page_count];
724         vm_page_t mab[vm_pageout_page_count];
725         vm_page_t ma[vm_pageout_page_count];
726
727         s = splvm();
728         pi = p->pindex;
729         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
730                 if (object->generation != curgeneration) {
731                         splx(s);
732                         return(0);
733                 }
734         }
735
736         maxf = 0;
737         for(i = 1; i < vm_pageout_page_count; i++) {
738                 vm_page_t tp;
739
740                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
741                         if ((tp->flags & PG_BUSY) ||
742                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
743                                  (tp->flags & PG_CLEANCHK) == 0) ||
744                                 (tp->busy != 0))
745                                 break;
746                         if((tp->queue - tp->pc) == PQ_CACHE) {
747                                 vm_page_flag_clear(tp, PG_CLEANCHK);
748                                 break;
749                         }
750                         vm_page_test_dirty(tp);
751                         if ((tp->dirty & tp->valid) == 0) {
752                                 vm_page_flag_clear(tp, PG_CLEANCHK);
753                                 break;
754                         }
755                         maf[ i - 1 ] = tp;
756                         maxf++;
757                         continue;
758                 }
759                 break;
760         }
761
762         maxb = 0;
763         chkb = vm_pageout_page_count -  maxf;
764         if (chkb) {
765                 for(i = 1; i < chkb;i++) {
766                         vm_page_t tp;
767
768                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
769                                 if ((tp->flags & PG_BUSY) ||
770                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
771                                          (tp->flags & PG_CLEANCHK) == 0) ||
772                                         (tp->busy != 0))
773                                         break;
774                                 if((tp->queue - tp->pc) == PQ_CACHE) {
775                                         vm_page_flag_clear(tp, PG_CLEANCHK);
776                                         break;
777                                 }
778                                 vm_page_test_dirty(tp);
779                                 if ((tp->dirty & tp->valid) == 0) {
780                                         vm_page_flag_clear(tp, PG_CLEANCHK);
781                                         break;
782                                 }
783                                 mab[ i - 1 ] = tp;
784                                 maxb++;
785                                 continue;
786                         }
787                         break;
788                 }
789         }
790
791         for(i = 0; i < maxb; i++) {
792                 int index = (maxb - i) - 1;
793                 ma[index] = mab[i];
794                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
795         }
796         vm_page_flag_clear(p, PG_CLEANCHK);
797         ma[maxb] = p;
798         for(i = 0; i < maxf; i++) {
799                 int index = (maxb + i) + 1;
800                 ma[index] = maf[i];
801                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
802         }
803         runlen = maxb + maxf + 1;
804
805         splx(s);
806         vm_pageout_flush(ma, runlen, pagerflags);
807         for (i = 0; i < runlen; i++) {
808                 if (ma[i]->valid & ma[i]->dirty) {
809                         vm_page_protect(ma[i], VM_PROT_READ);
810                         vm_page_flag_set(ma[i], PG_CLEANCHK);
811
812                         /*
813                          * maxf will end up being the actual number of pages
814                          * we wrote out contiguously, non-inclusive of the
815                          * first page.  We do not count look-behind pages.
816                          */
817                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
818                                 maxf = i - maxb - 1;
819                 }
820         }
821         return(maxf + 1);
822 }
823
824 #ifdef not_used
825 /* XXX I cannot tell if this should be an exported symbol */
826 /*
827  *      vm_object_deactivate_pages
828  *
829  *      Deactivate all pages in the specified object.  (Keep its pages
830  *      in memory even though it is no longer referenced.)
831  *
832  *      The object must be locked.
833  */
834 static void
835 vm_object_deactivate_pages(object)
836         vm_object_t object;
837 {
838         vm_page_t p, next;
839
840         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
841                 next = TAILQ_NEXT(p, listq);
842                 vm_page_deactivate(p);
843         }
844 }
845 #endif
846
847 /*
848  * Same as vm_object_pmap_copy, except range checking really
849  * works, and is meant for small sections of an object.
850  *
851  * This code protects resident pages by making them read-only
852  * and is typically called on a fork or split when a page
853  * is converted to copy-on-write.  
854  *
855  * NOTE: If the page is already at VM_PROT_NONE, calling
856  * vm_page_protect will have no effect.
857  */
858
859 void
860 vm_object_pmap_copy_1(object, start, end)
861         vm_object_t object;
862         vm_pindex_t start;
863         vm_pindex_t end;
864 {
865         vm_pindex_t idx;
866         vm_page_t p;
867
868         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
869                 return;
870
871         for (idx = start; idx < end; idx++) {
872                 p = vm_page_lookup(object, idx);
873                 if (p == NULL)
874                         continue;
875                 vm_page_protect(p, VM_PROT_READ);
876         }
877 }
878
879 /*
880  *      vm_object_pmap_remove:
881  *
882  *      Removes all physical pages in the specified
883  *      object range from all physical maps.
884  *
885  *      The object must *not* be locked.
886  */
887 void
888 vm_object_pmap_remove(object, start, end)
889         vm_object_t object;
890         vm_pindex_t start;
891         vm_pindex_t end;
892 {
893         vm_page_t p;
894
895         if (object == NULL)
896                 return;
897         for (p = TAILQ_FIRST(&object->memq);
898                 p != NULL;
899                 p = TAILQ_NEXT(p, listq)) {
900                 if (p->pindex >= start && p->pindex < end)
901                         vm_page_protect(p, VM_PROT_NONE);
902         }
903         if ((start == 0) && (object->size == end))
904                 vm_object_clear_flag(object, OBJ_WRITEABLE);
905 }
906
907 /*
908  *      vm_object_madvise:
909  *
910  *      Implements the madvise function at the object/page level.
911  *
912  *      MADV_WILLNEED   (any object)
913  *
914  *          Activate the specified pages if they are resident.
915  *
916  *      MADV_DONTNEED   (any object)
917  *
918  *          Deactivate the specified pages if they are resident.
919  *
920  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
921  *                       OBJ_ONEMAPPING only)
922  *
923  *          Deactivate and clean the specified pages if they are
924  *          resident.  This permits the process to reuse the pages
925  *          without faulting or the kernel to reclaim the pages
926  *          without I/O.
927  */
928 void
929 vm_object_madvise(object, pindex, count, advise)
930         vm_object_t object;
931         vm_pindex_t pindex;
932         int count;
933         int advise;
934 {
935         vm_pindex_t end, tpindex;
936         vm_object_t tobject;
937         vm_page_t m;
938
939         if (object == NULL)
940                 return;
941
942         end = pindex + count;
943
944         /*
945          * Locate and adjust resident pages
946          */
947
948         for (; pindex < end; pindex += 1) {
949 relookup:
950                 tobject = object;
951                 tpindex = pindex;
952 shadowlookup:
953                 /*
954                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
955                  * and those pages must be OBJ_ONEMAPPING.
956                  */
957                 if (advise == MADV_FREE) {
958                         if ((tobject->type != OBJT_DEFAULT &&
959                              tobject->type != OBJT_SWAP) ||
960                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
961                                 continue;
962                         }
963                 }
964
965                 m = vm_page_lookup(tobject, tpindex);
966
967                 if (m == NULL) {
968                         /*
969                          * There may be swap even if there is no backing page
970                          */
971                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
972                                 swap_pager_freespace(tobject, tpindex, 1);
973
974                         /*
975                          * next object
976                          */
977                         tobject = tobject->backing_object;
978                         if (tobject == NULL)
979                                 continue;
980                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
981                         goto shadowlookup;
982                 }
983
984                 /*
985                  * If the page is busy or not in a normal active state,
986                  * we skip it.  If the page is not managed there are no
987                  * page queues to mess with.  Things can break if we mess
988                  * with pages in any of the below states.
989                  */
990                 if (
991                     m->hold_count ||
992                     m->wire_count ||
993                     (m->flags & PG_UNMANAGED) ||
994                     m->valid != VM_PAGE_BITS_ALL
995                 ) {
996                         continue;
997                 }
998
999                 if (vm_page_sleep_busy(m, TRUE, "madvpo"))
1000                         goto relookup;
1001
1002                 if (advise == MADV_WILLNEED) {
1003                         vm_page_activate(m);
1004                 } else if (advise == MADV_DONTNEED) {
1005                         vm_page_dontneed(m);
1006                 } else if (advise == MADV_FREE) {
1007                         /*
1008                          * Mark the page clean.  This will allow the page
1009                          * to be freed up by the system.  However, such pages
1010                          * are often reused quickly by malloc()/free()
1011                          * so we do not do anything that would cause
1012                          * a page fault if we can help it.
1013                          *
1014                          * Specifically, we do not try to actually free
1015                          * the page now nor do we try to put it in the
1016                          * cache (which would cause a page fault on reuse).
1017                          *
1018                          * But we do make the page is freeable as we
1019                          * can without actually taking the step of unmapping
1020                          * it.
1021                          */
1022                         pmap_clear_modify(m);
1023                         m->dirty = 0;
1024                         m->act_count = 0;
1025                         vm_page_dontneed(m);
1026                         if (tobject->type == OBJT_SWAP)
1027                                 swap_pager_freespace(tobject, tpindex, 1);
1028                 }
1029         }       
1030 }
1031
1032 /*
1033  *      vm_object_shadow:
1034  *
1035  *      Create a new object which is backed by the
1036  *      specified existing object range.  The source
1037  *      object reference is deallocated.
1038  *
1039  *      The new object and offset into that object
1040  *      are returned in the source parameters.
1041  */
1042
1043 void
1044 vm_object_shadow(object, offset, length)
1045         vm_object_t *object;    /* IN/OUT */
1046         vm_ooffset_t *offset;   /* IN/OUT */
1047         vm_size_t length;
1048 {
1049         vm_object_t source;
1050         vm_object_t result;
1051
1052         source = *object;
1053
1054         /*
1055          * Don't create the new object if the old object isn't shared.
1056          */
1057
1058         if (source != NULL &&
1059             source->ref_count == 1 &&
1060             source->handle == NULL &&
1061             (source->type == OBJT_DEFAULT ||
1062              source->type == OBJT_SWAP))
1063                 return;
1064
1065         /*
1066          * Allocate a new object with the given length
1067          */
1068
1069         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1070                 panic("vm_object_shadow: no object for shadowing");
1071
1072         /*
1073          * The new object shadows the source object, adding a reference to it.
1074          * Our caller changes his reference to point to the new object,
1075          * removing a reference to the source object.  Net result: no change
1076          * of reference count.
1077          *
1078          * Try to optimize the result object's page color when shadowing
1079          * in order to maintain page coloring consistency in the combined 
1080          * shadowed object.
1081          */
1082         result->backing_object = source;
1083         if (source) {
1084                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1085                 source->shadow_count++;
1086                 source->generation++;
1087                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1088         }
1089
1090         /*
1091          * Store the offset into the source object, and fix up the offset into
1092          * the new object.
1093          */
1094
1095         result->backing_object_offset = *offset;
1096
1097         /*
1098          * Return the new things
1099          */
1100
1101         *offset = 0;
1102         *object = result;
1103 }
1104
1105 #define OBSC_TEST_ALL_SHADOWED  0x0001
1106 #define OBSC_COLLAPSE_NOWAIT    0x0002
1107 #define OBSC_COLLAPSE_WAIT      0x0004
1108
1109 static __inline int
1110 vm_object_backing_scan(vm_object_t object, int op)
1111 {
1112         int s;
1113         int r = 1;
1114         vm_page_t p;
1115         vm_object_t backing_object;
1116         vm_pindex_t backing_offset_index;
1117
1118         s = splvm();
1119
1120         backing_object = object->backing_object;
1121         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1122
1123         /*
1124          * Initial conditions
1125          */
1126
1127         if (op & OBSC_TEST_ALL_SHADOWED) {
1128                 /*
1129                  * We do not want to have to test for the existence of
1130                  * swap pages in the backing object.  XXX but with the
1131                  * new swapper this would be pretty easy to do.
1132                  *
1133                  * XXX what about anonymous MAP_SHARED memory that hasn't
1134                  * been ZFOD faulted yet?  If we do not test for this, the
1135                  * shadow test may succeed! XXX
1136                  */
1137                 if (backing_object->type != OBJT_DEFAULT) {
1138                         splx(s);
1139                         return(0);
1140                 }
1141         }
1142         if (op & OBSC_COLLAPSE_WAIT) {
1143                 vm_object_set_flag(backing_object, OBJ_DEAD);
1144         }
1145
1146         /*
1147          * Our scan
1148          */
1149
1150         p = TAILQ_FIRST(&backing_object->memq);
1151         while (p) {
1152                 vm_page_t next = TAILQ_NEXT(p, listq);
1153                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1154
1155                 if (op & OBSC_TEST_ALL_SHADOWED) {
1156                         vm_page_t pp;
1157
1158                         /*
1159                          * Ignore pages outside the parent object's range
1160                          * and outside the parent object's mapping of the 
1161                          * backing object.
1162                          *
1163                          * note that we do not busy the backing object's
1164                          * page.
1165                          */
1166
1167                         if (
1168                             p->pindex < backing_offset_index ||
1169                             new_pindex >= object->size
1170                         ) {
1171                                 p = next;
1172                                 continue;
1173                         }
1174
1175                         /*
1176                          * See if the parent has the page or if the parent's
1177                          * object pager has the page.  If the parent has the
1178                          * page but the page is not valid, the parent's
1179                          * object pager must have the page.
1180                          *
1181                          * If this fails, the parent does not completely shadow
1182                          * the object and we might as well give up now.
1183                          */
1184
1185                         pp = vm_page_lookup(object, new_pindex);
1186                         if (
1187                             (pp == NULL || pp->valid == 0) &&
1188                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1189                         ) {
1190                                 r = 0;
1191                                 break;
1192                         }
1193                 }
1194
1195                 /*
1196                  * Check for busy page
1197                  */
1198
1199                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1200                         vm_page_t pp;
1201
1202                         if (op & OBSC_COLLAPSE_NOWAIT) {
1203                                 if (
1204                                     (p->flags & PG_BUSY) ||
1205                                     !p->valid || 
1206                                     p->hold_count || 
1207                                     p->wire_count ||
1208                                     p->busy
1209                                 ) {
1210                                         p = next;
1211                                         continue;
1212                                 }
1213                         } else if (op & OBSC_COLLAPSE_WAIT) {
1214                                 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1215                                         /*
1216                                          * If we slept, anything could have
1217                                          * happened.  Since the object is
1218                                          * marked dead, the backing offset
1219                                          * should not have changed so we
1220                                          * just restart our scan.
1221                                          */
1222                                         p = TAILQ_FIRST(&backing_object->memq);
1223                                         continue;
1224                                 }
1225                         }
1226
1227                         /* 
1228                          * Busy the page
1229                          */
1230                         vm_page_busy(p);
1231
1232                         KASSERT(
1233                             p->object == backing_object,
1234                             ("vm_object_qcollapse(): object mismatch")
1235                         );
1236
1237                         /*
1238                          * Destroy any associated swap
1239                          */
1240                         if (backing_object->type == OBJT_SWAP) {
1241                                 swap_pager_freespace(
1242                                     backing_object, 
1243                                     p->pindex,
1244                                     1
1245                                 );
1246                         }
1247
1248                         if (
1249                             p->pindex < backing_offset_index ||
1250                             new_pindex >= object->size
1251                         ) {
1252                                 /*
1253                                  * Page is out of the parent object's range, we 
1254                                  * can simply destroy it. 
1255                                  */
1256                                 vm_page_protect(p, VM_PROT_NONE);
1257                                 vm_page_free(p);
1258                                 p = next;
1259                                 continue;
1260                         }
1261
1262                         pp = vm_page_lookup(object, new_pindex);
1263                         if (
1264                             pp != NULL ||
1265                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1266                         ) {
1267                                 /*
1268                                  * page already exists in parent OR swap exists
1269                                  * for this location in the parent.  Destroy 
1270                                  * the original page from the backing object.
1271                                  *
1272                                  * Leave the parent's page alone
1273                                  */
1274                                 vm_page_protect(p, VM_PROT_NONE);
1275                                 vm_page_free(p);
1276                                 p = next;
1277                                 continue;
1278                         }
1279
1280                         /*
1281                          * Page does not exist in parent, rename the
1282                          * page from the backing object to the main object. 
1283                          *
1284                          * If the page was mapped to a process, it can remain 
1285                          * mapped through the rename.
1286                          */
1287                         if ((p->queue - p->pc) == PQ_CACHE)
1288                                 vm_page_deactivate(p);
1289
1290                         vm_page_rename(p, object, new_pindex);
1291                         /* page automatically made dirty by rename */
1292                 }
1293                 p = next;
1294         }
1295         splx(s);
1296         return(r);
1297 }
1298
1299
1300 /*
1301  * this version of collapse allows the operation to occur earlier and
1302  * when paging_in_progress is true for an object...  This is not a complete
1303  * operation, but should plug 99.9% of the rest of the leaks.
1304  */
1305 static void
1306 vm_object_qcollapse(object)
1307         vm_object_t object;
1308 {
1309         vm_object_t backing_object = object->backing_object;
1310
1311         if (backing_object->ref_count != 1)
1312                 return;
1313
1314         backing_object->ref_count += 2;
1315
1316         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1317
1318         backing_object->ref_count -= 2;
1319 }
1320
1321 /*
1322  *      vm_object_collapse:
1323  *
1324  *      Collapse an object with the object backing it.
1325  *      Pages in the backing object are moved into the
1326  *      parent, and the backing object is deallocated.
1327  */
1328 void
1329 vm_object_collapse(object)
1330         vm_object_t object;
1331 {
1332         while (TRUE) {
1333                 vm_object_t backing_object;
1334
1335                 /*
1336                  * Verify that the conditions are right for collapse:
1337                  *
1338                  * The object exists and the backing object exists.
1339                  */
1340                 if (object == NULL)
1341                         break;
1342
1343                 if ((backing_object = object->backing_object) == NULL)
1344                         break;
1345
1346                 /*
1347                  * we check the backing object first, because it is most likely
1348                  * not collapsable.
1349                  */
1350                 if (backing_object->handle != NULL ||
1351                     (backing_object->type != OBJT_DEFAULT &&
1352                      backing_object->type != OBJT_SWAP) ||
1353                     (backing_object->flags & OBJ_DEAD) ||
1354                     object->handle != NULL ||
1355                     (object->type != OBJT_DEFAULT &&
1356                      object->type != OBJT_SWAP) ||
1357                     (object->flags & OBJ_DEAD)) {
1358                         break;
1359                 }
1360
1361                 if (
1362                     object->paging_in_progress != 0 ||
1363                     backing_object->paging_in_progress != 0
1364                 ) {
1365                         vm_object_qcollapse(object);
1366                         break;
1367                 }
1368
1369                 /*
1370                  * We know that we can either collapse the backing object (if
1371                  * the parent is the only reference to it) or (perhaps) have
1372                  * the parent bypass the object if the parent happens to shadow
1373                  * all the resident pages in the entire backing object.
1374                  *
1375                  * This is ignoring pager-backed pages such as swap pages.
1376                  * vm_object_backing_scan fails the shadowing test in this
1377                  * case.
1378                  */
1379
1380                 if (backing_object->ref_count == 1) {
1381                         /*
1382                          * If there is exactly one reference to the backing
1383                          * object, we can collapse it into the parent.  
1384                          */
1385
1386                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1387
1388                         /*
1389                          * Move the pager from backing_object to object.
1390                          */
1391
1392                         if (backing_object->type == OBJT_SWAP) {
1393                                 vm_object_pip_add(backing_object, 1);
1394
1395                                 /*
1396                                  * scrap the paging_offset junk and do a 
1397                                  * discrete copy.  This also removes major 
1398                                  * assumptions about how the swap-pager 
1399                                  * works from where it doesn't belong.  The
1400                                  * new swapper is able to optimize the
1401                                  * destroy-source case.
1402                                  */
1403
1404                                 vm_object_pip_add(object, 1);
1405                                 swap_pager_copy(
1406                                     backing_object,
1407                                     object,
1408                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1409                                 vm_object_pip_wakeup(object);
1410
1411                                 vm_object_pip_wakeup(backing_object);
1412                         }
1413                         /*
1414                          * Object now shadows whatever backing_object did.
1415                          * Note that the reference to 
1416                          * backing_object->backing_object moves from within 
1417                          * backing_object to within object.
1418                          */
1419
1420                         LIST_REMOVE(object, shadow_list);
1421                         object->backing_object->shadow_count--;
1422                         object->backing_object->generation++;
1423                         if (backing_object->backing_object) {
1424                                 LIST_REMOVE(backing_object, shadow_list);
1425                                 backing_object->backing_object->shadow_count--;
1426                                 backing_object->backing_object->generation++;
1427                         }
1428                         object->backing_object = backing_object->backing_object;
1429                         if (object->backing_object) {
1430                                 LIST_INSERT_HEAD(
1431                                     &object->backing_object->shadow_head,
1432                                     object, 
1433                                     shadow_list
1434                                 );
1435                                 object->backing_object->shadow_count++;
1436                                 object->backing_object->generation++;
1437                         }
1438
1439                         object->backing_object_offset +=
1440                             backing_object->backing_object_offset;
1441
1442                         /*
1443                          * Discard backing_object.
1444                          *
1445                          * Since the backing object has no pages, no pager left,
1446                          * and no object references within it, all that is
1447                          * necessary is to dispose of it.
1448                          */
1449
1450                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1451                         KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1452                         TAILQ_REMOVE(
1453                             &vm_object_list, 
1454                             backing_object,
1455                             object_list
1456                         );
1457                         vm_object_count--;
1458
1459                         zfree(obj_zone, backing_object);
1460
1461                         object_collapses++;
1462                 } else {
1463                         vm_object_t new_backing_object;
1464
1465                         /*
1466                          * If we do not entirely shadow the backing object,
1467                          * there is nothing we can do so we give up.
1468                          */
1469
1470                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1471                                 break;
1472                         }
1473
1474                         /*
1475                          * Make the parent shadow the next object in the
1476                          * chain.  Deallocating backing_object will not remove
1477                          * it, since its reference count is at least 2.
1478                          */
1479
1480                         LIST_REMOVE(object, shadow_list);
1481                         backing_object->shadow_count--;
1482                         backing_object->generation++;
1483
1484                         new_backing_object = backing_object->backing_object;
1485                         if ((object->backing_object = new_backing_object) != NULL) {
1486                                 vm_object_reference(new_backing_object);
1487                                 LIST_INSERT_HEAD(
1488                                     &new_backing_object->shadow_head,
1489                                     object,
1490                                     shadow_list
1491                                 );
1492                                 new_backing_object->shadow_count++;
1493                                 new_backing_object->generation++;
1494                                 object->backing_object_offset +=
1495                                         backing_object->backing_object_offset;
1496                         }
1497
1498                         /*
1499                          * Drop the reference count on backing_object. Since
1500                          * its ref_count was at least 2, it will not vanish;
1501                          * so we don't need to call vm_object_deallocate, but
1502                          * we do anyway.
1503                          */
1504                         vm_object_deallocate(backing_object);
1505                         object_bypasses++;
1506                 }
1507
1508                 /*
1509                  * Try again with this object's new backing object.
1510                  */
1511         }
1512 }
1513
1514 /*
1515  *      vm_object_page_remove: [internal]
1516  *
1517  *      Removes all physical pages in the specified
1518  *      object range from the object's list of pages.
1519  *
1520  *      The object must be locked.
1521  */
1522 void
1523 vm_object_page_remove(object, start, end, clean_only)
1524         vm_object_t object;
1525         vm_pindex_t start;
1526         vm_pindex_t end;
1527         boolean_t clean_only;
1528 {
1529         vm_page_t p, next;
1530         unsigned int size;
1531         int all;
1532
1533         if (object == NULL ||
1534             object->resident_page_count == 0)
1535                 return;
1536
1537         all = ((end == 0) && (start == 0));
1538
1539         /*
1540          * Since physically-backed objects do not use managed pages, we can't
1541          * remove pages from the object (we must instead remove the page
1542          * references, and then destroy the object).
1543          */
1544         KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1545
1546         vm_object_pip_add(object, 1);
1547 again:
1548         size = end - start;
1549         if (all || size > object->resident_page_count / 4) {
1550                 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1551                         next = TAILQ_NEXT(p, listq);
1552                         if (all || ((start <= p->pindex) && (p->pindex < end))) {
1553                                 if (p->wire_count != 0) {
1554                                         vm_page_protect(p, VM_PROT_NONE);
1555                                         if (!clean_only)
1556                                                 p->valid = 0;
1557                                         continue;
1558                                 }
1559
1560                                 /*
1561                                  * The busy flags are only cleared at
1562                                  * interrupt -- minimize the spl transitions
1563                                  */
1564
1565                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1566                                         goto again;
1567
1568                                 if (clean_only && p->valid) {
1569                                         vm_page_test_dirty(p);
1570                                         if (p->valid & p->dirty)
1571                                                 continue;
1572                                 }
1573
1574                                 vm_page_busy(p);
1575                                 vm_page_protect(p, VM_PROT_NONE);
1576                                 vm_page_free(p);
1577                         }
1578                 }
1579         } else {
1580                 while (size > 0) {
1581                         if ((p = vm_page_lookup(object, start)) != 0) {
1582
1583                                 if (p->wire_count != 0) {
1584                                         vm_page_protect(p, VM_PROT_NONE);
1585                                         if (!clean_only)
1586                                                 p->valid = 0;
1587                                         start += 1;
1588                                         size -= 1;
1589                                         continue;
1590                                 }
1591
1592                                 /*
1593                                  * The busy flags are only cleared at
1594                                  * interrupt -- minimize the spl transitions
1595                                  */
1596                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1597                                         goto again;
1598
1599                                 if (clean_only && p->valid) {
1600                                         vm_page_test_dirty(p);
1601                                         if (p->valid & p->dirty) {
1602                                                 start += 1;
1603                                                 size -= 1;
1604                                                 continue;
1605                                         }
1606                                 }
1607
1608                                 vm_page_busy(p);
1609                                 vm_page_protect(p, VM_PROT_NONE);
1610                                 vm_page_free(p);
1611                         }
1612                         start += 1;
1613                         size -= 1;
1614                 }
1615         }
1616         vm_object_pip_wakeup(object);
1617 }
1618
1619 /*
1620  *      Routine:        vm_object_coalesce
1621  *      Function:       Coalesces two objects backing up adjoining
1622  *                      regions of memory into a single object.
1623  *
1624  *      returns TRUE if objects were combined.
1625  *
1626  *      NOTE:   Only works at the moment if the second object is NULL -
1627  *              if it's not, which object do we lock first?
1628  *
1629  *      Parameters:
1630  *              prev_object     First object to coalesce
1631  *              prev_offset     Offset into prev_object
1632  *              next_object     Second object into coalesce
1633  *              next_offset     Offset into next_object
1634  *
1635  *              prev_size       Size of reference to prev_object
1636  *              next_size       Size of reference to next_object
1637  *
1638  *      Conditions:
1639  *      The object must *not* be locked.
1640  */
1641 boolean_t
1642 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size)
1643         vm_object_t prev_object;
1644         vm_pindex_t prev_pindex;
1645         vm_size_t prev_size, next_size;
1646 {
1647         vm_pindex_t next_pindex;
1648
1649         if (prev_object == NULL) {
1650                 return (TRUE);
1651         }
1652
1653         if (prev_object->type != OBJT_DEFAULT &&
1654             prev_object->type != OBJT_SWAP) {
1655                 return (FALSE);
1656         }
1657
1658         /*
1659          * Try to collapse the object first
1660          */
1661         vm_object_collapse(prev_object);
1662
1663         /*
1664          * Can't coalesce if: . more than one reference . paged out . shadows
1665          * another object . has a copy elsewhere (any of which mean that the
1666          * pages not mapped to prev_entry may be in use anyway)
1667          */
1668
1669         if (prev_object->backing_object != NULL) {
1670                 return (FALSE);
1671         }
1672
1673         prev_size >>= PAGE_SHIFT;
1674         next_size >>= PAGE_SHIFT;
1675         next_pindex = prev_pindex + prev_size;
1676
1677         if ((prev_object->ref_count > 1) &&
1678             (prev_object->size != next_pindex)) {
1679                 return (FALSE);
1680         }
1681
1682         /*
1683          * Remove any pages that may still be in the object from a previous
1684          * deallocation.
1685          */
1686         if (next_pindex < prev_object->size) {
1687                 vm_object_page_remove(prev_object,
1688                                       next_pindex,
1689                                       next_pindex + next_size, FALSE);
1690                 if (prev_object->type == OBJT_SWAP)
1691                         swap_pager_freespace(prev_object,
1692                                              next_pindex, next_size);
1693         }
1694
1695         /*
1696          * Extend the object if necessary.
1697          */
1698         if (next_pindex + next_size > prev_object->size)
1699                 prev_object->size = next_pindex + next_size;
1700
1701         return (TRUE);
1702 }
1703
1704 void
1705 vm_object_set_writeable_dirty(vm_object_t object)
1706 {
1707         struct vnode *vp;
1708
1709         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1710         if (object->type == OBJT_VNODE &&
1711             (vp = (struct vnode *)object->handle) != NULL) {
1712                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1713                         lwkt_gettoken(&vp->v_interlock);
1714                         vp->v_flag |= VOBJDIRTY;
1715                         lwkt_reltoken(&vp->v_interlock);
1716                 }
1717         }
1718 }
1719
1720
1721
1722 #include "opt_ddb.h"
1723 #ifdef DDB
1724 #include <sys/kernel.h>
1725
1726 #include <sys/cons.h>
1727
1728 #include <ddb/ddb.h>
1729
1730 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1731                                        vm_map_entry_t entry);
1732 static int      vm_object_in_map (vm_object_t object);
1733
1734 static int
1735 _vm_object_in_map(map, object, entry)
1736         vm_map_t map;
1737         vm_object_t object;
1738         vm_map_entry_t entry;
1739 {
1740         vm_map_t tmpm;
1741         vm_map_entry_t tmpe;
1742         vm_object_t obj;
1743         int entcount;
1744
1745         if (map == 0)
1746                 return 0;
1747
1748         if (entry == 0) {
1749                 tmpe = map->header.next;
1750                 entcount = map->nentries;
1751                 while (entcount-- && (tmpe != &map->header)) {
1752                         if( _vm_object_in_map(map, object, tmpe)) {
1753                                 return 1;
1754                         }
1755                         tmpe = tmpe->next;
1756                 }
1757         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1758                 tmpm = entry->object.sub_map;
1759                 tmpe = tmpm->header.next;
1760                 entcount = tmpm->nentries;
1761                 while (entcount-- && tmpe != &tmpm->header) {
1762                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1763                                 return 1;
1764                         }
1765                         tmpe = tmpe->next;
1766                 }
1767         } else if ((obj = entry->object.vm_object) != NULL) {
1768                 for(; obj; obj=obj->backing_object)
1769                         if( obj == object) {
1770                                 return 1;
1771                         }
1772         }
1773         return 0;
1774 }
1775
1776 static int
1777 vm_object_in_map( object)
1778         vm_object_t object;
1779 {
1780         struct proc *p;
1781         for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1782                 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1783                         continue;
1784                 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1785                         return 1;
1786         }
1787         if( _vm_object_in_map( kernel_map, object, 0))
1788                 return 1;
1789         if( _vm_object_in_map( pager_map, object, 0))
1790                 return 1;
1791         if( _vm_object_in_map( buffer_map, object, 0))
1792                 return 1;
1793         if( _vm_object_in_map( mb_map, object, 0))
1794                 return 1;
1795         return 0;
1796 }
1797
1798 DB_SHOW_COMMAND(vmochk, vm_object_check)
1799 {
1800         vm_object_t object;
1801
1802         /*
1803          * make sure that internal objs are in a map somewhere
1804          * and none have zero ref counts.
1805          */
1806         for (object = TAILQ_FIRST(&vm_object_list);
1807                         object != NULL;
1808                         object = TAILQ_NEXT(object, object_list)) {
1809                 if (object->handle == NULL &&
1810                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1811                         if (object->ref_count == 0) {
1812                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1813                                         (long)object->size);
1814                         }
1815                         if (!vm_object_in_map(object)) {
1816                                 db_printf(
1817                         "vmochk: internal obj is not in a map: "
1818                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1819                                     object->ref_count, (u_long)object->size, 
1820                                     (u_long)object->size,
1821                                     (void *)object->backing_object);
1822                         }
1823                 }
1824         }
1825 }
1826
1827 /*
1828  *      vm_object_print:        [ debug ]
1829  */
1830 DB_SHOW_COMMAND(object, vm_object_print_static)
1831 {
1832         /* XXX convert args. */
1833         vm_object_t object = (vm_object_t)addr;
1834         boolean_t full = have_addr;
1835
1836         vm_page_t p;
1837
1838         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1839 #define count   was_count
1840
1841         int count;
1842
1843         if (object == NULL)
1844                 return;
1845
1846         db_iprintf(
1847             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1848             object, (int)object->type, (u_long)object->size,
1849             object->resident_page_count, object->ref_count, object->flags);
1850         /*
1851          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1852          */
1853         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1854             object->shadow_count, 
1855             object->backing_object ? object->backing_object->ref_count : 0,
1856             object->backing_object, (long)object->backing_object_offset);
1857
1858         if (!full)
1859                 return;
1860
1861         db_indent += 2;
1862         count = 0;
1863         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1864                 if (count == 0)
1865                         db_iprintf("memory:=");
1866                 else if (count == 6) {
1867                         db_printf("\n");
1868                         db_iprintf(" ...");
1869                         count = 0;
1870                 } else
1871                         db_printf(",");
1872                 count++;
1873
1874                 db_printf("(off=0x%lx,page=0x%lx)",
1875                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1876         }
1877         if (count != 0)
1878                 db_printf("\n");
1879         db_indent -= 2;
1880 }
1881
1882 /* XXX. */
1883 #undef count
1884
1885 /* XXX need this non-static entry for calling from vm_map_print. */
1886 void
1887 vm_object_print(addr, have_addr, count, modif)
1888         /* db_expr_t */ long addr;
1889         boolean_t have_addr;
1890         /* db_expr_t */ long count;
1891         char *modif;
1892 {
1893         vm_object_print_static(addr, have_addr, count, modif);
1894 }
1895
1896 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1897 {
1898         vm_object_t object;
1899         int nl = 0;
1900         int c;
1901         for (object = TAILQ_FIRST(&vm_object_list);
1902                         object != NULL;
1903                         object = TAILQ_NEXT(object, object_list)) {
1904                 vm_pindex_t idx, fidx;
1905                 vm_pindex_t osize;
1906                 vm_paddr_t pa = -1, padiff;
1907                 int rcount;
1908                 vm_page_t m;
1909
1910                 db_printf("new object: %p\n", (void *)object);
1911                 if ( nl > 18) {
1912                         c = cngetc();
1913                         if (c != ' ')
1914                                 return;
1915                         nl = 0;
1916                 }
1917                 nl++;
1918                 rcount = 0;
1919                 fidx = 0;
1920                 osize = object->size;
1921                 if (osize > 128)
1922                         osize = 128;
1923                 for(idx=0;idx<osize;idx++) {
1924                         m = vm_page_lookup(object, idx);
1925                         if (m == NULL) {
1926                                 if (rcount) {
1927                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1928                                                 (long)fidx, rcount, (long)pa);
1929                                         if ( nl > 18) {
1930                                                 c = cngetc();
1931                                                 if (c != ' ')
1932                                                         return;
1933                                                 nl = 0;
1934                                         }
1935                                         nl++;
1936                                         rcount = 0;
1937                                 }
1938                                 continue;
1939                         }
1940
1941                                 
1942                         if (rcount &&
1943                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1944                                 ++rcount;
1945                                 continue;
1946                         }
1947                         if (rcount) {
1948                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1949                                 padiff >>= PAGE_SHIFT;
1950                                 padiff &= PQ_L2_MASK;
1951                                 if (padiff == 0) {
1952                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1953                                         ++rcount;
1954                                         continue;
1955                                 }
1956                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1957                                         (long)fidx, rcount, (long)pa);
1958                                 db_printf("pd(%ld)\n", (long)padiff);
1959                                 if ( nl > 18) {
1960                                         c = cngetc();
1961                                         if (c != ' ')
1962                                                 return;
1963                                         nl = 0;
1964                                 }
1965                                 nl++;
1966                         }
1967                         fidx = idx;
1968                         pa = VM_PAGE_TO_PHYS(m);
1969                         rcount = 1;
1970                 }
1971                 if (rcount) {
1972                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1973                                 (long)fidx, rcount, (long)pa);
1974                         if ( nl > 18) {
1975                                 c = cngetc();
1976                                 if (c != ' ')
1977                                         return;
1978                                 nl = 0;
1979                         }
1980                         nl++;
1981                 }
1982         }
1983 }
1984 #endif /* DDB */