trek(6): Drop fast/slow modes and the broken autodetection
[dragonfly.git] / sys / kern / sys_pipe.c
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/poll.h>
40 #include <sys/select.h>
41 #include <sys/signalvar.h>
42 #include <sys/sysproto.h>
43 #include <sys/pipe.h>
44 #include <sys/vnode.h>
45 #include <sys/uio.h>
46 #include <sys/event.h>
47 #include <sys/globaldata.h>
48 #include <sys/module.h>
49 #include <sys/malloc.h>
50 #include <sys/sysctl.h>
51 #include <sys/socket.h>
52
53 #include <vm/vm.h>
54 #include <vm/vm_param.h>
55 #include <sys/lock.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_extern.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_zone.h>
63
64 #include <sys/file2.h>
65 #include <sys/signal2.h>
66
67 #include <machine/cpufunc.h>
68
69 /*
70  * interfaces to the outside world
71  */
72 static int pipe_read (struct file *fp, struct uio *uio, 
73                 struct ucred *cred, int flags);
74 static int pipe_write (struct file *fp, struct uio *uio, 
75                 struct ucred *cred, int flags);
76 static int pipe_close (struct file *fp);
77 static int pipe_shutdown (struct file *fp, int how);
78 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
79 static int pipe_kqfilter (struct file *fp, struct knote *kn);
80 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
81 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
82                 struct ucred *cred, struct sysmsg *msg);
83
84 static struct fileops pipeops = {
85         .fo_read = pipe_read, 
86         .fo_write = pipe_write,
87         .fo_ioctl = pipe_ioctl,
88         .fo_poll = pipe_poll,
89         .fo_kqfilter = pipe_kqfilter,
90         .fo_stat = pipe_stat,
91         .fo_close = pipe_close,
92         .fo_shutdown = pipe_shutdown
93 };
94
95 static void     filt_pipedetach(struct knote *kn);
96 static int      filt_piperead(struct knote *kn, long hint);
97 static int      filt_pipewrite(struct knote *kn, long hint);
98
99 static struct filterops pipe_rfiltops =
100         { 1, NULL, filt_pipedetach, filt_piperead };
101 static struct filterops pipe_wfiltops =
102         { 1, NULL, filt_pipedetach, filt_pipewrite };
103
104 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
105
106 /*
107  * Default pipe buffer size(s), this can be kind-of large now because pipe
108  * space is pageable.  The pipe code will try to maintain locality of
109  * reference for performance reasons, so small amounts of outstanding I/O
110  * will not wipe the cache.
111  */
112 #define MINPIPESIZE (PIPE_SIZE/3)
113 #define MAXPIPESIZE (2*PIPE_SIZE/3)
114
115 /*
116  * Limit the number of "big" pipes
117  */
118 #define LIMITBIGPIPES   64
119 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
120
121 static int pipe_maxbig = LIMITBIGPIPES;
122 static int pipe_maxcache = PIPEQ_MAX_CACHE;
123 static int pipe_bigcount;
124 static int pipe_nbig;
125 static int pipe_bcache_alloc;
126 static int pipe_bkmem_alloc;
127 static int pipe_rblocked_count;
128 static int pipe_wblocked_count;
129
130 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
131 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
132         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
133 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
134         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
135 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
136         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
137 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
138         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
139 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
140         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
141 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
142         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
143 #ifdef SMP
144 static int pipe_delay = 5000;   /* 5uS default */
145 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
146         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
147 static int pipe_mpsafe = 1;
148 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
149         CTLFLAG_RW, &pipe_mpsafe, 0, "");
150 #endif
151 #if !defined(NO_PIPE_SYSCTL_STATS)
152 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
153         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
154 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
155         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
156 #endif
157
158 static void pipeclose (struct pipe *cpipe);
159 static void pipe_free_kmem (struct pipe *cpipe);
160 static int pipe_create (struct pipe **cpipep);
161 static __inline void pipeselwakeup (struct pipe *cpipe);
162 static int pipespace (struct pipe *cpipe, int size);
163
164 static __inline void
165 pipeselwakeup(struct pipe *cpipe)
166 {
167         if (cpipe->pipe_state & PIPE_SEL) {
168                 get_mplock();
169                 cpipe->pipe_state &= ~PIPE_SEL;
170                 selwakeup(&cpipe->pipe_sel);
171                 rel_mplock();
172         }
173         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
174                 get_mplock();
175                 pgsigio(cpipe->pipe_sigio, SIGIO, 0);
176                 rel_mplock();
177         }
178         if (SLIST_FIRST(&cpipe->pipe_sel.si_note)) {
179                 get_mplock();
180                 KNOTE(&cpipe->pipe_sel.si_note, 0);
181                 rel_mplock();
182         }
183 }
184
185 /*
186  * These routines are called before and after a UIO.  The UIO
187  * may block, causing our held tokens to be lost temporarily.
188  *
189  * We use these routines to serialize reads against other reads
190  * and writes against other writes.
191  *
192  * The read token is held on entry so *ipp does not race.
193  */
194 static __inline int
195 pipe_start_uio(struct pipe *cpipe, int *ipp)
196 {
197         int error;
198
199         while (*ipp) {
200                 *ipp = -1;
201                 error = tsleep(ipp, PCATCH, "pipexx", 0);
202                 if (error)
203                         return (error);
204         }
205         *ipp = 1;
206         return (0);
207 }
208
209 static __inline void
210 pipe_end_uio(struct pipe *cpipe, int *ipp)
211 {
212         if (*ipp < 0) {
213                 *ipp = 0;
214                 wakeup(ipp);
215         } else {
216                 KKASSERT(*ipp > 0);
217                 *ipp = 0;
218         }
219 }
220
221 static __inline void
222 pipe_get_mplock(int *save)
223 {
224 #ifdef SMP
225         if (pipe_mpsafe == 0) {
226                 get_mplock();
227                 *save = 1;
228         } else
229 #endif
230         {
231                 *save = 0;
232         }
233 }
234
235 static __inline void
236 pipe_rel_mplock(int *save)
237 {
238 #ifdef SMP
239         if (*save)
240                 rel_mplock();
241 #endif
242 }
243
244
245 /*
246  * The pipe system call for the DTYPE_PIPE type of pipes
247  *
248  * pipe_ARgs(int dummy)
249  */
250
251 /* ARGSUSED */
252 int
253 sys_pipe(struct pipe_args *uap)
254 {
255         struct thread *td = curthread;
256         struct proc *p = td->td_proc;
257         struct file *rf, *wf;
258         struct pipe *rpipe, *wpipe;
259         int fd1, fd2, error;
260
261         KKASSERT(p);
262
263         rpipe = wpipe = NULL;
264         if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
265                 pipeclose(rpipe); 
266                 pipeclose(wpipe); 
267                 return (ENFILE);
268         }
269         
270         error = falloc(p, &rf, &fd1);
271         if (error) {
272                 pipeclose(rpipe);
273                 pipeclose(wpipe);
274                 return (error);
275         }
276         uap->sysmsg_fds[0] = fd1;
277
278         /*
279          * Warning: once we've gotten past allocation of the fd for the
280          * read-side, we can only drop the read side via fdrop() in order
281          * to avoid races against processes which manage to dup() the read
282          * side while we are blocked trying to allocate the write side.
283          */
284         rf->f_type = DTYPE_PIPE;
285         rf->f_flag = FREAD | FWRITE;
286         rf->f_ops = &pipeops;
287         rf->f_data = rpipe;
288         error = falloc(p, &wf, &fd2);
289         if (error) {
290                 fsetfd(p, NULL, fd1);
291                 fdrop(rf);
292                 /* rpipe has been closed by fdrop(). */
293                 pipeclose(wpipe);
294                 return (error);
295         }
296         wf->f_type = DTYPE_PIPE;
297         wf->f_flag = FREAD | FWRITE;
298         wf->f_ops = &pipeops;
299         wf->f_data = wpipe;
300         uap->sysmsg_fds[1] = fd2;
301
302         rpipe->pipe_slock = kmalloc(sizeof(struct lock),
303                                     M_PIPE, M_WAITOK|M_ZERO);
304         wpipe->pipe_slock = rpipe->pipe_slock;
305         rpipe->pipe_peer = wpipe;
306         wpipe->pipe_peer = rpipe;
307         lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
308
309         /*
310          * Once activated the peer relationship remains valid until
311          * both sides are closed.
312          */
313         fsetfd(p, rf, fd1);
314         fsetfd(p, wf, fd2);
315         fdrop(rf);
316         fdrop(wf);
317
318         return (0);
319 }
320
321 /*
322  * Allocate kva for pipe circular buffer, the space is pageable
323  * This routine will 'realloc' the size of a pipe safely, if it fails
324  * it will retain the old buffer.
325  * If it fails it will return ENOMEM.
326  */
327 static int
328 pipespace(struct pipe *cpipe, int size)
329 {
330         struct vm_object *object;
331         caddr_t buffer;
332         int npages, error;
333
334         npages = round_page(size) / PAGE_SIZE;
335         object = cpipe->pipe_buffer.object;
336
337         /*
338          * [re]create the object if necessary and reserve space for it
339          * in the kernel_map.  The object and memory are pageable.  On
340          * success, free the old resources before assigning the new
341          * ones.
342          */
343         if (object == NULL || object->size != npages) {
344                 get_mplock();
345                 object = vm_object_allocate(OBJT_DEFAULT, npages);
346                 buffer = (caddr_t)vm_map_min(&kernel_map);
347
348                 error = vm_map_find(&kernel_map, object, 0,
349                                     (vm_offset_t *)&buffer, size,
350                                     1,
351                                     VM_MAPTYPE_NORMAL,
352                                     VM_PROT_ALL, VM_PROT_ALL,
353                                     0);
354
355                 if (error != KERN_SUCCESS) {
356                         vm_object_deallocate(object);
357                         rel_mplock();
358                         return (ENOMEM);
359                 }
360                 pipe_free_kmem(cpipe);
361                 rel_mplock();
362                 cpipe->pipe_buffer.object = object;
363                 cpipe->pipe_buffer.buffer = buffer;
364                 cpipe->pipe_buffer.size = size;
365                 ++pipe_bkmem_alloc;
366         } else {
367                 ++pipe_bcache_alloc;
368         }
369         cpipe->pipe_buffer.rindex = 0;
370         cpipe->pipe_buffer.windex = 0;
371         return (0);
372 }
373
374 /*
375  * Initialize and allocate VM and memory for pipe, pulling the pipe from
376  * our per-cpu cache if possible.  For now make sure it is sized for the
377  * smaller PIPE_SIZE default.
378  */
379 static int
380 pipe_create(struct pipe **cpipep)
381 {
382         globaldata_t gd = mycpu;
383         struct pipe *cpipe;
384         int error;
385
386         if ((cpipe = gd->gd_pipeq) != NULL) {
387                 gd->gd_pipeq = cpipe->pipe_peer;
388                 --gd->gd_pipeqcount;
389                 cpipe->pipe_peer = NULL;
390                 cpipe->pipe_wantwcnt = 0;
391         } else {
392                 cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
393         }
394         *cpipep = cpipe;
395         if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
396                 return (error);
397         vfs_timestamp(&cpipe->pipe_ctime);
398         cpipe->pipe_atime = cpipe->pipe_ctime;
399         cpipe->pipe_mtime = cpipe->pipe_ctime;
400         lwkt_token_init(&cpipe->pipe_rlock);
401         lwkt_token_init(&cpipe->pipe_wlock);
402         return (0);
403 }
404
405 /*
406  * MPALMOSTSAFE (acquires mplock)
407  */
408 static int
409 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
410 {
411         struct pipe *rpipe;
412         int error;
413         size_t nread = 0;
414         int nbio;
415         u_int size;     /* total bytes available */
416         u_int nsize;    /* total bytes to read */
417         u_int rindex;   /* contiguous bytes available */
418         int notify_writer;
419         lwkt_tokref rlock;
420         lwkt_tokref wlock;
421         int mpsave;
422         int bigread;
423         int bigcount;
424
425         if (uio->uio_resid == 0)
426                 return(0);
427
428         /*
429          * Setup locks, calculate nbio
430          */
431         pipe_get_mplock(&mpsave);
432         rpipe = (struct pipe *)fp->f_data;
433         lwkt_gettoken(&rlock, &rpipe->pipe_rlock);
434
435         if (fflags & O_FBLOCKING)
436                 nbio = 0;
437         else if (fflags & O_FNONBLOCKING)
438                 nbio = 1;
439         else if (fp->f_flag & O_NONBLOCK)
440                 nbio = 1;
441         else
442                 nbio = 0;
443
444         /*
445          * Reads are serialized.  Note howeverthat pipe_buffer.buffer and
446          * pipe_buffer.size can change out from under us when the number
447          * of bytes in the buffer are zero due to the write-side doing a
448          * pipespace().
449          */
450         error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
451         if (error) {
452                 pipe_rel_mplock(&mpsave);
453                 lwkt_reltoken(&rlock);
454                 return (error);
455         }
456         notify_writer = 0;
457
458         bigread = (uio->uio_resid > 10 * 1024 * 1024);
459         bigcount = 10;
460
461         while (uio->uio_resid) {
462                 /*
463                  * Don't hog the cpu.
464                  */
465                 if (bigread && --bigcount == 0) {
466                         lwkt_user_yield();
467                         bigcount = 10;
468                         if (CURSIG(curthread->td_lwp)) {
469                                 error = EINTR;
470                                 break;
471                         }
472                 }
473
474                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
475                 cpu_lfence();
476                 if (size) {
477                         rindex = rpipe->pipe_buffer.rindex &
478                                  (rpipe->pipe_buffer.size - 1);
479                         nsize = size;
480                         if (nsize > rpipe->pipe_buffer.size - rindex)
481                                 nsize = rpipe->pipe_buffer.size - rindex;
482                         nsize = szmin(nsize, uio->uio_resid);
483
484                         error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
485                                         nsize, uio);
486                         if (error)
487                                 break;
488                         cpu_mfence();
489                         rpipe->pipe_buffer.rindex += nsize;
490                         nread += nsize;
491
492                         /*
493                          * If the FIFO is still over half full just continue
494                          * and do not try to notify the writer yet.
495                          */
496                         if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
497                                 notify_writer = 0;
498                                 continue;
499                         }
500
501                         /*
502                          * When the FIFO is less then half full notify any
503                          * waiting writer.  WANTW can be checked while
504                          * holding just the rlock.
505                          */
506                         notify_writer = 1;
507                         if ((rpipe->pipe_state & PIPE_WANTW) == 0)
508                                 continue;
509                 }
510
511                 /*
512                  * If the "write-side" was blocked we wake it up.  This code
513                  * is reached either when the buffer is completely emptied
514                  * or if it becomes more then half-empty.
515                  *
516                  * Pipe_state can only be modified if both the rlock and
517                  * wlock are held.
518                  */
519                 if (rpipe->pipe_state & PIPE_WANTW) {
520                         lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
521                         if (rpipe->pipe_state & PIPE_WANTW) {
522                                 notify_writer = 0;
523                                 rpipe->pipe_state &= ~PIPE_WANTW;
524                                 lwkt_reltoken(&wlock);
525                                 wakeup(rpipe);
526                         } else {
527                                 lwkt_reltoken(&wlock);
528                         }
529                 }
530
531                 /*
532                  * Pick up our copy loop again if the writer sent data to
533                  * us while we were messing around.
534                  *
535                  * On a SMP box poll up to pipe_delay nanoseconds for new
536                  * data.  Typically a value of 2000 to 4000 is sufficient
537                  * to eradicate most IPIs/tsleeps/wakeups when a pipe
538                  * is used for synchronous communications with small packets,
539                  * and 8000 or so (8uS) will pipeline large buffer xfers
540                  * between cpus over a pipe.
541                  *
542                  * For synchronous communications a hit means doing a
543                  * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
544                  * where as miss requiring a tsleep/wakeup sequence
545                  * will take 7uS or more.
546                  */
547                 if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
548                         continue;
549
550 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
551                 if (pipe_delay) {
552                         int64_t tsc_target;
553                         int good = 0;
554
555                         tsc_target = tsc_get_target(pipe_delay);
556                         while (tsc_test_target(tsc_target) == 0) {
557                                 if (rpipe->pipe_buffer.windex !=
558                                     rpipe->pipe_buffer.rindex) {
559                                         good = 1;
560                                         break;
561                                 }
562                         }
563                         if (good)
564                                 continue;
565                 }
566 #endif
567
568                 /*
569                  * Detect EOF condition, do not set error.
570                  */
571                 if (rpipe->pipe_state & PIPE_REOF)
572                         break;
573
574                 /*
575                  * Break if some data was read, or if this was a non-blocking
576                  * read.
577                  */
578                 if (nread > 0)
579                         break;
580
581                 if (nbio) {
582                         error = EAGAIN;
583                         break;
584                 }
585
586                 /*
587                  * Last chance, interlock with WANTR.
588                  */
589                 lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
590                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
591                 if (size) {
592                         lwkt_reltoken(&wlock);
593                         continue;
594                 }
595
596                 /*
597                  * If there is no more to read in the pipe, reset its
598                  * pointers to the beginning.  This improves cache hit
599                  * stats.
600                  *
601                  * We need both locks to modify both pointers, and there
602                  * must also not be a write in progress or the uiomove()
603                  * in the write might block and temporarily release
604                  * its wlock, then reacquire and update windex.  We are
605                  * only serialized against reads, not writes.
606                  *
607                  * XXX should we even bother resetting the indices?  It
608                  *     might actually be more cache efficient not to.
609                  */
610                 if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
611                     rpipe->pipe_wip == 0) {
612                         rpipe->pipe_buffer.rindex = 0;
613                         rpipe->pipe_buffer.windex = 0;
614                 }
615
616                 /*
617                  * Wait for more data.
618                  *
619                  * Pipe_state can only be set if both the rlock and wlock
620                  * are held.
621                  */
622                 rpipe->pipe_state |= PIPE_WANTR;
623                 tsleep_interlock(rpipe, PCATCH);
624                 lwkt_reltoken(&wlock);
625                 error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
626                 ++pipe_rblocked_count;
627                 if (error)
628                         break;
629         }
630         pipe_end_uio(rpipe, &rpipe->pipe_rip);
631
632         /*
633          * Uptime last access time
634          */
635         if (error == 0 && nread)
636                 vfs_timestamp(&rpipe->pipe_atime);
637
638         /*
639          * If we drained the FIFO more then half way then handle
640          * write blocking hysteresis.
641          *
642          * Note that PIPE_WANTW cannot be set by the writer without
643          * it holding both rlock and wlock, so we can test it
644          * while holding just rlock.
645          */
646         if (notify_writer) {
647                 if (rpipe->pipe_state & PIPE_WANTW) {
648                         lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
649                         if (rpipe->pipe_state & PIPE_WANTW) {
650                                 rpipe->pipe_state &= ~PIPE_WANTW;
651                                 lwkt_reltoken(&wlock);
652                                 wakeup(rpipe);
653                         } else {
654                                 lwkt_reltoken(&wlock);
655                         }
656                 }
657         }
658         size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
659         lwkt_reltoken(&rlock);
660
661         /*
662          * If enough space is available in buffer then wakeup sel writers?
663          */
664         if ((rpipe->pipe_buffer.size - size) >= PIPE_BUF)
665                 pipeselwakeup(rpipe);
666         pipe_rel_mplock(&mpsave);
667         return (error);
668 }
669
670 /*
671  * MPALMOSTSAFE - acquires mplock
672  */
673 static int
674 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
675 {
676         int error;
677         int orig_resid;
678         int nbio;
679         struct pipe *wpipe, *rpipe;
680         lwkt_tokref rlock;
681         lwkt_tokref wlock;
682         u_int windex;
683         u_int space;
684         u_int wcount;
685         int mpsave;
686         int bigwrite;
687         int bigcount;
688
689         pipe_get_mplock(&mpsave);
690
691         /*
692          * Writes go to the peer.  The peer will always exist.
693          */
694         rpipe = (struct pipe *) fp->f_data;
695         wpipe = rpipe->pipe_peer;
696         lwkt_gettoken(&wlock, &wpipe->pipe_wlock);
697         if (wpipe->pipe_state & PIPE_WEOF) {
698                 pipe_rel_mplock(&mpsave);
699                 lwkt_reltoken(&wlock);
700                 return (EPIPE);
701         }
702
703         /*
704          * Degenerate case (EPIPE takes prec)
705          */
706         if (uio->uio_resid == 0) {
707                 pipe_rel_mplock(&mpsave);
708                 lwkt_reltoken(&wlock);
709                 return(0);
710         }
711
712         /*
713          * Writes are serialized (start_uio must be called with wlock)
714          */
715         error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
716         if (error) {
717                 pipe_rel_mplock(&mpsave);
718                 lwkt_reltoken(&wlock);
719                 return (error);
720         }
721
722         if (fflags & O_FBLOCKING)
723                 nbio = 0;
724         else if (fflags & O_FNONBLOCKING)
725                 nbio = 1;
726         else if (fp->f_flag & O_NONBLOCK)
727                 nbio = 1;
728         else
729                 nbio = 0;
730
731         /*
732          * If it is advantageous to resize the pipe buffer, do
733          * so.  We are write-serialized so we can block safely.
734          */
735         if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
736             (pipe_nbig < pipe_maxbig) &&
737             wpipe->pipe_wantwcnt > 4 &&
738             (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
739                 /* 
740                  * Recheck after lock.
741                  */
742                 lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
743                 if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
744                     (pipe_nbig < pipe_maxbig) &&
745                     (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
746                         atomic_add_int(&pipe_nbig, 1);
747                         if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
748                                 ++pipe_bigcount;
749                         else
750                                 atomic_subtract_int(&pipe_nbig, 1);
751                 }
752                 lwkt_reltoken(&rlock);
753         }
754
755         orig_resid = uio->uio_resid;
756         wcount = 0;
757
758         bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
759         bigcount = 10;
760
761         while (uio->uio_resid) {
762                 if (wpipe->pipe_state & PIPE_WEOF) {
763                         error = EPIPE;
764                         break;
765                 }
766
767                 /*
768                  * Don't hog the cpu.
769                  */
770                 if (bigwrite && --bigcount == 0) {
771                         lwkt_user_yield();
772                         bigcount = 10;
773                         if (CURSIG(curthread->td_lwp)) {
774                                 error = EINTR;
775                                 break;
776                         }
777                 }
778
779                 windex = wpipe->pipe_buffer.windex &
780                          (wpipe->pipe_buffer.size - 1);
781                 space = wpipe->pipe_buffer.size -
782                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
783                 cpu_lfence();
784
785                 /* Writes of size <= PIPE_BUF must be atomic. */
786                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
787                         space = 0;
788
789                 /* 
790                  * Write to fill, read size handles write hysteresis.  Also
791                  * additional restrictions can cause select-based non-blocking
792                  * writes to spin.
793                  */
794                 if (space > 0) {
795                         u_int segsize;
796
797                         /*
798                          * Transfer size is minimum of uio transfer
799                          * and free space in pipe buffer.
800                          *
801                          * Limit each uiocopy to no more then PIPE_SIZE
802                          * so we can keep the gravy train going on a
803                          * SMP box.  This doubles the performance for
804                          * write sizes > 16K.  Otherwise large writes
805                          * wind up doing an inefficient synchronous
806                          * ping-pong.
807                          */
808                         space = szmin(space, uio->uio_resid);
809                         if (space > PIPE_SIZE)
810                                 space = PIPE_SIZE;
811
812                         /*
813                          * First segment to transfer is minimum of
814                          * transfer size and contiguous space in
815                          * pipe buffer.  If first segment to transfer
816                          * is less than the transfer size, we've got
817                          * a wraparound in the buffer.
818                          */
819                         segsize = wpipe->pipe_buffer.size - windex;
820                         if (segsize > space)
821                                 segsize = space;
822
823 #ifdef SMP
824                         /*
825                          * If this is the first loop and the reader is
826                          * blocked, do a preemptive wakeup of the reader.
827                          *
828                          * On SMP the IPI latency plus the wlock interlock
829                          * on the reader side is the fastest way to get the
830                          * reader going.  (The scheduler will hard loop on
831                          * lock tokens).
832                          *
833                          * NOTE: We can't clear WANTR here without acquiring
834                          * the rlock, which we don't want to do here!
835                          */
836                         if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
837                                 wakeup(wpipe);
838 #endif
839
840                         /*
841                          * Transfer segment, which may include a wrap-around.
842                          * Update windex to account for both all in one go
843                          * so the reader can read() the data atomically.
844                          */
845                         error = uiomove(&wpipe->pipe_buffer.buffer[windex],
846                                         segsize, uio);
847                         if (error == 0 && segsize < space) {
848                                 segsize = space - segsize;
849                                 error = uiomove(&wpipe->pipe_buffer.buffer[0],
850                                                 segsize, uio);
851                         }
852                         if (error)
853                                 break;
854                         cpu_mfence();
855                         wpipe->pipe_buffer.windex += space;
856                         wcount += space;
857                         continue;
858                 }
859
860                 /*
861                  * We need both the rlock and the wlock to interlock against
862                  * the EOF, WANTW, and size checks, and to modify pipe_state.
863                  *
864                  * These are token locks so we do not have to worry about
865                  * deadlocks.
866                  */
867                 lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
868
869                 /*
870                  * If the "read-side" has been blocked, wake it up now
871                  * and yield to let it drain synchronously rather
872                  * then block.
873                  */
874                 if (wpipe->pipe_state & PIPE_WANTR) {
875                         wpipe->pipe_state &= ~PIPE_WANTR;
876                         wakeup(wpipe);
877                 }
878
879                 /*
880                  * don't block on non-blocking I/O
881                  */
882                 if (nbio) {
883                         lwkt_reltoken(&rlock);
884                         error = EAGAIN;
885                         break;
886                 }
887
888                 /*
889                  * re-test whether we have to block in the writer after
890                  * acquiring both locks, in case the reader opened up
891                  * some space.
892                  */
893                 space = wpipe->pipe_buffer.size -
894                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
895                 cpu_lfence();
896                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
897                         space = 0;
898
899                 /*
900                  * We have no more space and have something to offer,
901                  * wake up select/poll.
902                  */
903                 if (space == 0) {
904                         wpipe->pipe_state |= PIPE_WANTW;
905                         ++wpipe->pipe_wantwcnt;
906                         pipeselwakeup(wpipe);
907                         if (wpipe->pipe_state & PIPE_WANTW)
908                                 error = tsleep(wpipe, PCATCH, "pipewr", 0);
909                         ++pipe_wblocked_count;
910                 }
911                 lwkt_reltoken(&rlock);
912
913                 /*
914                  * Break out if we errored or the read side wants us to go
915                  * away.
916                  */
917                 if (error)
918                         break;
919                 if (wpipe->pipe_state & PIPE_WEOF) {
920                         error = EPIPE;
921                         break;
922                 }
923         }
924         pipe_end_uio(wpipe, &wpipe->pipe_wip);
925
926         /*
927          * If we have put any characters in the buffer, we wake up
928          * the reader.
929          *
930          * Both rlock and wlock are required to be able to modify pipe_state.
931          */
932         if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
933                 if (wpipe->pipe_state & PIPE_WANTR) {
934                         lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
935                         if (wpipe->pipe_state & PIPE_WANTR) {
936                                 wpipe->pipe_state &= ~PIPE_WANTR;
937                                 lwkt_reltoken(&rlock);
938                                 wakeup(wpipe);
939                         } else {
940                                 lwkt_reltoken(&rlock);
941                         }
942                 }
943         }
944
945         /*
946          * Don't return EPIPE if I/O was successful
947          */
948         if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
949             (uio->uio_resid == 0) &&
950             (error == EPIPE)) {
951                 error = 0;
952         }
953
954         if (error == 0)
955                 vfs_timestamp(&wpipe->pipe_mtime);
956
957         /*
958          * We have something to offer,
959          * wake up select/poll.
960          */
961         space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;
962         lwkt_reltoken(&wlock);
963         if (space)
964                 pipeselwakeup(wpipe);
965         pipe_rel_mplock(&mpsave);
966         return (error);
967 }
968
969 /*
970  * MPALMOSTSAFE - acquires mplock
971  *
972  * we implement a very minimal set of ioctls for compatibility with sockets.
973  */
974 int
975 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
976            struct ucred *cred, struct sysmsg *msg)
977 {
978         struct pipe *mpipe;
979         lwkt_tokref rlock;
980         lwkt_tokref wlock;
981         int error;
982         int mpsave;
983
984         pipe_get_mplock(&mpsave);
985         mpipe = (struct pipe *)fp->f_data;
986
987         lwkt_gettoken(&rlock, &mpipe->pipe_rlock);
988         lwkt_gettoken(&wlock, &mpipe->pipe_wlock);
989
990         switch (cmd) {
991         case FIOASYNC:
992                 if (*(int *)data) {
993                         mpipe->pipe_state |= PIPE_ASYNC;
994                 } else {
995                         mpipe->pipe_state &= ~PIPE_ASYNC;
996                 }
997                 error = 0;
998                 break;
999         case FIONREAD:
1000                 *(int *)data = mpipe->pipe_buffer.windex -
1001                                 mpipe->pipe_buffer.rindex;
1002                 error = 0;
1003                 break;
1004         case FIOSETOWN:
1005                 get_mplock();
1006                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1007                 rel_mplock();
1008                 break;
1009         case FIOGETOWN:
1010                 *(int *)data = fgetown(mpipe->pipe_sigio);
1011                 error = 0;
1012                 break;
1013         case TIOCSPGRP:
1014                 /* This is deprecated, FIOSETOWN should be used instead. */
1015                 get_mplock();
1016                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1017                 rel_mplock();
1018                 break;
1019
1020         case TIOCGPGRP:
1021                 /* This is deprecated, FIOGETOWN should be used instead. */
1022                 *(int *)data = -fgetown(mpipe->pipe_sigio);
1023                 error = 0;
1024                 break;
1025         default:
1026                 error = ENOTTY;
1027                 break;
1028         }
1029         lwkt_reltoken(&rlock);
1030         lwkt_reltoken(&wlock);
1031         pipe_rel_mplock(&mpsave);
1032
1033         return (error);
1034 }
1035
1036 /*
1037  * MPALMOSTSAFE - acquires mplock
1038  */
1039 int
1040 pipe_poll(struct file *fp, int events, struct ucred *cred)
1041 {
1042         struct pipe *rpipe;
1043         struct pipe *wpipe;
1044         int revents = 0;
1045         u_int space;
1046         int mpsave;
1047
1048         pipe_get_mplock(&mpsave);
1049         rpipe = (struct pipe *)fp->f_data;
1050         wpipe = rpipe->pipe_peer;
1051         if (events & (POLLIN | POLLRDNORM)) {
1052                 if ((rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex) ||
1053                     (rpipe->pipe_state & PIPE_REOF)) {
1054                         revents |= events & (POLLIN | POLLRDNORM);
1055                 }
1056         }
1057
1058         if (events & (POLLOUT | POLLWRNORM)) {
1059                 if (wpipe == NULL || (wpipe->pipe_state & PIPE_WEOF)) {
1060                         revents |= events & (POLLOUT | POLLWRNORM);
1061                 } else {
1062                         space = wpipe->pipe_buffer.windex -
1063                                 wpipe->pipe_buffer.rindex;
1064                         space = wpipe->pipe_buffer.size - space;
1065                         if (space >= PIPE_BUF)
1066                                 revents |= events & (POLLOUT | POLLWRNORM);
1067                 }
1068         }
1069
1070         if ((rpipe->pipe_state & PIPE_REOF) ||
1071             (wpipe == NULL) ||
1072             (wpipe->pipe_state & PIPE_WEOF))
1073                 revents |= POLLHUP;
1074
1075         if (revents == 0) {
1076                 if (events & (POLLIN | POLLRDNORM)) {
1077                         selrecord(curthread, &rpipe->pipe_sel);
1078                         rpipe->pipe_state |= PIPE_SEL;
1079                 }
1080
1081                 if (events & (POLLOUT | POLLWRNORM)) {
1082                         selrecord(curthread, &wpipe->pipe_sel);
1083                         wpipe->pipe_state |= PIPE_SEL;
1084                 }
1085         }
1086         pipe_rel_mplock(&mpsave);
1087         return (revents);
1088 }
1089
1090 /*
1091  * MPSAFE
1092  */
1093 static int
1094 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1095 {
1096         struct pipe *pipe;
1097         int mpsave;
1098
1099         pipe_get_mplock(&mpsave);
1100         pipe = (struct pipe *)fp->f_data;
1101
1102         bzero((caddr_t)ub, sizeof(*ub));
1103         ub->st_mode = S_IFIFO;
1104         ub->st_blksize = pipe->pipe_buffer.size;
1105         ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1106         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1107         ub->st_atimespec = pipe->pipe_atime;
1108         ub->st_mtimespec = pipe->pipe_mtime;
1109         ub->st_ctimespec = pipe->pipe_ctime;
1110         /*
1111          * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1112          * st_flags, st_gen.
1113          * XXX (st_dev, st_ino) should be unique.
1114          */
1115         pipe_rel_mplock(&mpsave);
1116         return (0);
1117 }
1118
1119 /*
1120  * MPALMOSTSAFE - acquires mplock
1121  */
1122 static int
1123 pipe_close(struct file *fp)
1124 {
1125         struct pipe *cpipe;
1126
1127         get_mplock();
1128         cpipe = (struct pipe *)fp->f_data;
1129         fp->f_ops = &badfileops;
1130         fp->f_data = NULL;
1131         funsetown(cpipe->pipe_sigio);
1132         pipeclose(cpipe);
1133         rel_mplock();
1134         return (0);
1135 }
1136
1137 /*
1138  * Shutdown one or both directions of a full-duplex pipe.
1139  *
1140  * MPALMOSTSAFE - acquires mplock
1141  */
1142 static int
1143 pipe_shutdown(struct file *fp, int how)
1144 {
1145         struct pipe *rpipe;
1146         struct pipe *wpipe;
1147         int error = EPIPE;
1148         lwkt_tokref rpipe_rlock;
1149         lwkt_tokref rpipe_wlock;
1150         lwkt_tokref wpipe_rlock;
1151         lwkt_tokref wpipe_wlock;
1152         int mpsave;
1153
1154         pipe_get_mplock(&mpsave);
1155         rpipe = (struct pipe *)fp->f_data;
1156         wpipe = rpipe->pipe_peer;
1157
1158         /*
1159          * We modify pipe_state on both pipes, which means we need
1160          * all four tokens!
1161          */
1162         lwkt_gettoken(&rpipe_rlock, &rpipe->pipe_rlock);
1163         lwkt_gettoken(&rpipe_wlock, &rpipe->pipe_wlock);
1164         lwkt_gettoken(&wpipe_rlock, &wpipe->pipe_rlock);
1165         lwkt_gettoken(&wpipe_wlock, &wpipe->pipe_wlock);
1166
1167         switch(how) {
1168         case SHUT_RDWR:
1169         case SHUT_RD:
1170                 rpipe->pipe_state |= PIPE_REOF;         /* my reads */
1171                 rpipe->pipe_state |= PIPE_WEOF;         /* peer writes */
1172                 if (rpipe->pipe_state & PIPE_WANTR) {
1173                         rpipe->pipe_state &= ~PIPE_WANTR;
1174                         wakeup(rpipe);
1175                 }
1176                 if (rpipe->pipe_state & PIPE_WANTW) {
1177                         rpipe->pipe_state &= ~PIPE_WANTW;
1178                         wakeup(rpipe);
1179                 }
1180                 error = 0;
1181                 if (how == SHUT_RD)
1182                         break;
1183                 /* fall through */
1184         case SHUT_WR:
1185                 wpipe->pipe_state |= PIPE_REOF;         /* peer reads */
1186                 wpipe->pipe_state |= PIPE_WEOF;         /* my writes */
1187                 if (wpipe->pipe_state & PIPE_WANTR) {
1188                         wpipe->pipe_state &= ~PIPE_WANTR;
1189                         wakeup(wpipe);
1190                 }
1191                 if (wpipe->pipe_state & PIPE_WANTW) {
1192                         wpipe->pipe_state &= ~PIPE_WANTW;
1193                         wakeup(wpipe);
1194                 }
1195                 error = 0;
1196                 break;
1197         }
1198         pipeselwakeup(rpipe);
1199         pipeselwakeup(wpipe);
1200
1201         lwkt_reltoken(&rpipe_rlock);
1202         lwkt_reltoken(&rpipe_wlock);
1203         lwkt_reltoken(&wpipe_rlock);
1204         lwkt_reltoken(&wpipe_wlock);
1205
1206         pipe_rel_mplock(&mpsave);
1207         return (error);
1208 }
1209
1210 static void
1211 pipe_free_kmem(struct pipe *cpipe)
1212 {
1213         if (cpipe->pipe_buffer.buffer != NULL) {
1214                 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1215                         atomic_subtract_int(&pipe_nbig, 1);
1216                 kmem_free(&kernel_map,
1217                         (vm_offset_t)cpipe->pipe_buffer.buffer,
1218                         cpipe->pipe_buffer.size);
1219                 cpipe->pipe_buffer.buffer = NULL;
1220                 cpipe->pipe_buffer.object = NULL;
1221         }
1222 }
1223
1224 /*
1225  * Close the pipe.  The slock must be held to interlock against simultanious
1226  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1227  */
1228 static void
1229 pipeclose(struct pipe *cpipe)
1230 {
1231         globaldata_t gd;
1232         struct pipe *ppipe;
1233         lwkt_tokref cpipe_rlock;
1234         lwkt_tokref cpipe_wlock;
1235         lwkt_tokref ppipe_rlock;
1236         lwkt_tokref ppipe_wlock;
1237
1238         if (cpipe == NULL)
1239                 return;
1240
1241         /*
1242          * The slock may not have been allocated yet (close during
1243          * initialization)
1244          *
1245          * We need both the read and write tokens to modify pipe_state.
1246          */
1247         if (cpipe->pipe_slock)
1248                 lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1249         lwkt_gettoken(&cpipe_rlock, &cpipe->pipe_rlock);
1250         lwkt_gettoken(&cpipe_wlock, &cpipe->pipe_wlock);
1251
1252         /*
1253          * Set our state, wakeup anyone waiting in select, and
1254          * wakeup anyone blocked on our pipe.
1255          */
1256         cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1257         pipeselwakeup(cpipe);
1258         if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1259                 cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1260                 wakeup(cpipe);
1261         }
1262
1263         /*
1264          * Disconnect from peer.
1265          */
1266         if ((ppipe = cpipe->pipe_peer) != NULL) {
1267                 lwkt_gettoken(&ppipe_rlock, &ppipe->pipe_rlock);
1268                 lwkt_gettoken(&ppipe_wlock, &ppipe->pipe_wlock);
1269                 ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1270                 pipeselwakeup(ppipe);
1271                 if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1272                         ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1273                         wakeup(ppipe);
1274                 }
1275                 if (SLIST_FIRST(&ppipe->pipe_sel.si_note)) {
1276                         get_mplock();
1277                         KNOTE(&ppipe->pipe_sel.si_note, 0);
1278                         rel_mplock();
1279                 }
1280                 lwkt_reltoken(&ppipe_rlock);
1281                 lwkt_reltoken(&ppipe_wlock);
1282         }
1283
1284         /*
1285          * If the peer is also closed we can free resources for both
1286          * sides, otherwise we leave our side intact to deal with any
1287          * races (since we only have the slock).
1288          */
1289         if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1290                 cpipe->pipe_peer = NULL;
1291                 ppipe->pipe_peer = NULL;
1292                 ppipe->pipe_slock = NULL;       /* we will free the slock */
1293                 pipeclose(ppipe);
1294                 ppipe = NULL;
1295         }
1296
1297         lwkt_reltoken(&cpipe_rlock);
1298         lwkt_reltoken(&cpipe_wlock);
1299         if (cpipe->pipe_slock)
1300                 lockmgr(cpipe->pipe_slock, LK_RELEASE);
1301
1302         /*
1303          * If we disassociated from our peer we can free resources
1304          */
1305         if (ppipe == NULL) {
1306                 gd = mycpu;
1307                 if (cpipe->pipe_slock) {
1308                         kfree(cpipe->pipe_slock, M_PIPE);
1309                         cpipe->pipe_slock = NULL;
1310                 }
1311                 if (gd->gd_pipeqcount >= pipe_maxcache ||
1312                     cpipe->pipe_buffer.size != PIPE_SIZE
1313                 ) {
1314                         pipe_free_kmem(cpipe);
1315                         kfree(cpipe, M_PIPE);
1316                 } else {
1317                         cpipe->pipe_state = 0;
1318                         cpipe->pipe_peer = gd->gd_pipeq;
1319                         gd->gd_pipeq = cpipe;
1320                         ++gd->gd_pipeqcount;
1321                 }
1322         }
1323 }
1324
1325 /*
1326  * MPALMOSTSAFE - acquires mplock
1327  */
1328 static int
1329 pipe_kqfilter(struct file *fp, struct knote *kn)
1330 {
1331         struct pipe *cpipe;
1332
1333         get_mplock();
1334         cpipe = (struct pipe *)kn->kn_fp->f_data;
1335
1336         switch (kn->kn_filter) {
1337         case EVFILT_READ:
1338                 kn->kn_fop = &pipe_rfiltops;
1339                 break;
1340         case EVFILT_WRITE:
1341                 kn->kn_fop = &pipe_wfiltops;
1342                 cpipe = cpipe->pipe_peer;
1343                 if (cpipe == NULL) {
1344                         /* other end of pipe has been closed */
1345                         rel_mplock();
1346                         return (EPIPE);
1347                 }
1348                 break;
1349         default:
1350                 return (1);
1351         }
1352         kn->kn_hook = (caddr_t)cpipe;
1353
1354         SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1355         rel_mplock();
1356         return (0);
1357 }
1358
1359 static void
1360 filt_pipedetach(struct knote *kn)
1361 {
1362         struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1363
1364         SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1365 }
1366
1367 /*ARGSUSED*/
1368 static int
1369 filt_piperead(struct knote *kn, long hint)
1370 {
1371         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1372
1373         kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1374
1375         /* XXX RACE */
1376         if (rpipe->pipe_state & PIPE_REOF) {
1377                 kn->kn_flags |= EV_EOF; 
1378                 return (1);
1379         }
1380         return (kn->kn_data > 0);
1381 }
1382
1383 /*ARGSUSED*/
1384 static int
1385 filt_pipewrite(struct knote *kn, long hint)
1386 {
1387         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1388         struct pipe *wpipe = rpipe->pipe_peer;
1389         u_int32_t space;
1390
1391         /* XXX RACE */
1392         if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1393                 kn->kn_data = 0;
1394                 kn->kn_flags |= EV_EOF; 
1395                 return (1);
1396         }
1397         space = wpipe->pipe_buffer.windex -
1398                 wpipe->pipe_buffer.rindex;
1399         space = wpipe->pipe_buffer.size - space;
1400         kn->kn_data = space;
1401         return (kn->kn_data >= PIPE_BUF);
1402 }