Merge branch 'vendor/BINUTILS224'
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <sys/sched.h>
37
38 /*
39  * 965+ support PIPE_CONTROL commands, which provide finer grained control
40  * over cache flushing.
41  */
42 struct pipe_control {
43         struct drm_i915_gem_object *obj;
44         volatile u32 *cpu_page;
45         u32 gtt_offset;
46 };
47
48 void
49 i915_trace_irq_get(struct intel_ring_buffer *ring, uint32_t seqno)
50 {
51
52         if (ring->trace_irq_seqno == 0) {
53                 lockmgr(&ring->irq_lock, LK_EXCLUSIVE);
54                 if (ring->irq_get(ring))
55                         ring->trace_irq_seqno = seqno;
56                 lockmgr(&ring->irq_lock, LK_RELEASE);
57         }
58 }
59
60 static inline int ring_space(struct intel_ring_buffer *ring)
61 {
62         int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
63         if (space < 0)
64                 space += ring->size;
65         return space;
66 }
67
68 static int
69 render_ring_flush(struct intel_ring_buffer *ring,
70                   uint32_t      invalidate_domains,
71                   uint32_t      flush_domains)
72 {
73         struct drm_device *dev = ring->dev;
74         uint32_t cmd;
75         int ret;
76
77         /*
78          * read/write caches:
79          *
80          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
81          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
82          * also flushed at 2d versus 3d pipeline switches.
83          *
84          * read-only caches:
85          *
86          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
87          * MI_READ_FLUSH is set, and is always flushed on 965.
88          *
89          * I915_GEM_DOMAIN_COMMAND may not exist?
90          *
91          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
92          * invalidated when MI_EXE_FLUSH is set.
93          *
94          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
95          * invalidated with every MI_FLUSH.
96          *
97          * TLBs:
98          *
99          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
100          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
101          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
102          * are flushed at any MI_FLUSH.
103          */
104
105         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
106         if ((invalidate_domains|flush_domains) &
107             I915_GEM_DOMAIN_RENDER)
108                 cmd &= ~MI_NO_WRITE_FLUSH;
109         if (INTEL_INFO(dev)->gen < 4) {
110                 /*
111                  * On the 965, the sampler cache always gets flushed
112                  * and this bit is reserved.
113                  */
114                 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
115                         cmd |= MI_READ_FLUSH;
116         }
117         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
118                 cmd |= MI_EXE_FLUSH;
119
120         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
121             (IS_G4X(dev) || IS_GEN5(dev)))
122                 cmd |= MI_INVALIDATE_ISP;
123
124         ret = intel_ring_begin(ring, 2);
125         if (ret)
126                 return ret;
127
128         intel_ring_emit(ring, cmd);
129         intel_ring_emit(ring, MI_NOOP);
130         intel_ring_advance(ring);
131
132         return 0;
133 }
134
135 /**
136  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
137  * implementing two workarounds on gen6.  From section 1.4.7.1
138  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
139  *
140  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
141  * produced by non-pipelined state commands), software needs to first
142  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
143  * 0.
144  *
145  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
146  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
147  *
148  * And the workaround for these two requires this workaround first:
149  *
150  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
151  * BEFORE the pipe-control with a post-sync op and no write-cache
152  * flushes.
153  *
154  * And this last workaround is tricky because of the requirements on
155  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
156  * volume 2 part 1:
157  *
158  *     "1 of the following must also be set:
159  *      - Render Target Cache Flush Enable ([12] of DW1)
160  *      - Depth Cache Flush Enable ([0] of DW1)
161  *      - Stall at Pixel Scoreboard ([1] of DW1)
162  *      - Depth Stall ([13] of DW1)
163  *      - Post-Sync Operation ([13] of DW1)
164  *      - Notify Enable ([8] of DW1)"
165  *
166  * The cache flushes require the workaround flush that triggered this
167  * one, so we can't use it.  Depth stall would trigger the same.
168  * Post-sync nonzero is what triggered this second workaround, so we
169  * can't use that one either.  Notify enable is IRQs, which aren't
170  * really our business.  That leaves only stall at scoreboard.
171  */
172 static int
173 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
174 {
175         struct pipe_control *pc = ring->private;
176         u32 scratch_addr = pc->gtt_offset + 128;
177         int ret;
178
179
180         ret = intel_ring_begin(ring, 6);
181         if (ret)
182                 return ret;
183
184         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
185         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
186                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
187         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
188         intel_ring_emit(ring, 0); /* low dword */
189         intel_ring_emit(ring, 0); /* high dword */
190         intel_ring_emit(ring, MI_NOOP);
191         intel_ring_advance(ring);
192
193         ret = intel_ring_begin(ring, 6);
194         if (ret)
195                 return ret;
196
197         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
198         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
199         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
200         intel_ring_emit(ring, 0);
201         intel_ring_emit(ring, 0);
202         intel_ring_emit(ring, MI_NOOP);
203         intel_ring_advance(ring);
204
205         return 0;
206 }
207
208 static int
209 gen6_render_ring_flush(struct intel_ring_buffer *ring,
210                          u32 invalidate_domains, u32 flush_domains)
211 {
212         u32 flags = 0;
213         struct pipe_control *pc = ring->private;
214         u32 scratch_addr = pc->gtt_offset + 128;
215         int ret;
216
217         /* Force SNB workarounds for PIPE_CONTROL flushes */
218         intel_emit_post_sync_nonzero_flush(ring);
219
220         /* Just flush everything.  Experiments have shown that reducing the
221          * number of bits based on the write domains has little performance
222          * impact.
223          */
224         flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
225         flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
226         flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
227         flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
228         flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
229         flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
230         flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
231
232         ret = intel_ring_begin(ring, 6);
233         if (ret)
234                 return ret;
235
236         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
237         intel_ring_emit(ring, flags);
238         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
239         intel_ring_emit(ring, 0); /* lower dword */
240         intel_ring_emit(ring, 0); /* uppwer dword */
241         intel_ring_emit(ring, MI_NOOP);
242         intel_ring_advance(ring);
243
244         return 0;
245 }
246
247 static void ring_write_tail(struct intel_ring_buffer *ring,
248                             uint32_t value)
249 {
250         drm_i915_private_t *dev_priv = ring->dev->dev_private;
251         I915_WRITE_TAIL(ring, value);
252 }
253
254 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
255 {
256         drm_i915_private_t *dev_priv = ring->dev->dev_private;
257         uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
258                         RING_ACTHD(ring->mmio_base) : ACTHD;
259
260         return I915_READ(acthd_reg);
261 }
262
263 static int init_ring_common(struct intel_ring_buffer *ring)
264 {
265         drm_i915_private_t *dev_priv = ring->dev->dev_private;
266         struct drm_i915_gem_object *obj = ring->obj;
267         uint32_t head;
268
269         /* Stop the ring if it's running. */
270         I915_WRITE_CTL(ring, 0);
271         I915_WRITE_HEAD(ring, 0);
272         ring->write_tail(ring, 0);
273
274         /* Initialize the ring. */
275         I915_WRITE_START(ring, obj->gtt_offset);
276         head = I915_READ_HEAD(ring) & HEAD_ADDR;
277
278         /* G45 ring initialization fails to reset head to zero */
279         if (head != 0) {
280                 DRM_DEBUG("%s head not reset to zero "
281                               "ctl %08x head %08x tail %08x start %08x\n",
282                               ring->name,
283                               I915_READ_CTL(ring),
284                               I915_READ_HEAD(ring),
285                               I915_READ_TAIL(ring),
286                               I915_READ_START(ring));
287
288                 I915_WRITE_HEAD(ring, 0);
289
290                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
291                         DRM_ERROR("failed to set %s head to zero "
292                                   "ctl %08x head %08x tail %08x start %08x\n",
293                                   ring->name,
294                                   I915_READ_CTL(ring),
295                                   I915_READ_HEAD(ring),
296                                   I915_READ_TAIL(ring),
297                                   I915_READ_START(ring));
298                 }
299         }
300
301         I915_WRITE_CTL(ring,
302                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
303                         | RING_VALID);
304
305         /* If the head is still not zero, the ring is dead */
306         if (_intel_wait_for(ring->dev,
307             (I915_READ_CTL(ring) & RING_VALID) != 0 &&
308              I915_READ_START(ring) == obj->gtt_offset &&
309              (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
310             50, 1, "915rii")) {
311                 DRM_ERROR("%s initialization failed "
312                                 "ctl %08x head %08x tail %08x start %08x\n",
313                                 ring->name,
314                                 I915_READ_CTL(ring),
315                                 I915_READ_HEAD(ring),
316                                 I915_READ_TAIL(ring),
317                                 I915_READ_START(ring));
318                 return -EIO;
319         }
320
321         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
322                 i915_kernel_lost_context(ring->dev);
323         else {
324                 ring->head = I915_READ_HEAD(ring);
325                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
326                 ring->space = ring_space(ring);
327         }
328
329         return 0;
330 }
331
332 static int
333 init_pipe_control(struct intel_ring_buffer *ring)
334 {
335         struct pipe_control *pc;
336         struct drm_i915_gem_object *obj;
337         int ret;
338
339         if (ring->private)
340                 return 0;
341
342         pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
343         if (!pc)
344                 return -ENOMEM;
345
346         obj = i915_gem_alloc_object(ring->dev, 4096);
347         if (obj == NULL) {
348                 DRM_ERROR("Failed to allocate seqno page\n");
349                 ret = -ENOMEM;
350                 goto err;
351         }
352
353         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
354
355         ret = i915_gem_object_pin(obj, 4096, true);
356         if (ret)
357                 goto err_unref;
358
359         pc->gtt_offset = obj->gtt_offset;
360         pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
361         if (pc->cpu_page == NULL)
362                 goto err_unpin;
363         pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
364         pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
365             (vm_offset_t)pc->cpu_page + PAGE_SIZE);
366
367         pc->obj = obj;
368         ring->private = pc;
369         return 0;
370
371 err_unpin:
372         i915_gem_object_unpin(obj);
373 err_unref:
374         drm_gem_object_unreference(&obj->base);
375 err:
376         drm_free(pc, DRM_I915_GEM);
377         return ret;
378 }
379
380 static void
381 cleanup_pipe_control(struct intel_ring_buffer *ring)
382 {
383         struct pipe_control *pc = ring->private;
384         struct drm_i915_gem_object *obj;
385
386         if (!ring->private)
387                 return;
388
389         obj = pc->obj;
390         pmap_qremove((vm_offset_t)pc->cpu_page, 1);
391         kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
392         i915_gem_object_unpin(obj);
393         drm_gem_object_unreference(&obj->base);
394
395         drm_free(pc, DRM_I915_GEM);
396         ring->private = NULL;
397 }
398
399 static int init_render_ring(struct intel_ring_buffer *ring)
400 {
401         struct drm_device *dev = ring->dev;
402         struct drm_i915_private *dev_priv = dev->dev_private;
403         int ret = init_ring_common(ring);
404
405         if (INTEL_INFO(dev)->gen > 3) {
406                 int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
407                 I915_WRITE(MI_MODE, mode);
408                 if (IS_GEN7(dev))
409                         I915_WRITE(GFX_MODE_GEN7,
410                                    GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
411                                    GFX_MODE_ENABLE(GFX_REPLAY_MODE));
412         }
413
414         if (INTEL_INFO(dev)->gen >= 5) {
415                 ret = init_pipe_control(ring);
416                 if (ret)
417                         return ret;
418         }
419
420
421         if (IS_GEN6(dev)) {
422                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
423                  * "If this bit is set, STCunit will have LRA as replacement
424                  *  policy. [...] This bit must be reset.  LRA replacement
425                  *  policy is not supported."
426                  */
427                 I915_WRITE(CACHE_MODE_0,
428                            CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT);
429         }
430
431         if (INTEL_INFO(dev)->gen >= 6) {
432                 I915_WRITE(INSTPM,
433                            INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
434         }
435
436         return ret;
437 }
438
439 static void render_ring_cleanup(struct intel_ring_buffer *ring)
440 {
441         if (!ring->private)
442                 return;
443
444         cleanup_pipe_control(ring);
445 }
446
447 static void
448 update_mboxes(struct intel_ring_buffer *ring,
449             u32 seqno,
450             u32 mmio_offset)
451 {
452         intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
453                               MI_SEMAPHORE_GLOBAL_GTT |
454                               MI_SEMAPHORE_REGISTER |
455                               MI_SEMAPHORE_UPDATE);
456         intel_ring_emit(ring, seqno);
457         intel_ring_emit(ring, mmio_offset);
458 }
459
460 /**
461  * gen6_add_request - Update the semaphore mailbox registers
462  * 
463  * @ring - ring that is adding a request
464  * @seqno - return seqno stuck into the ring
465  *
466  * Update the mailbox registers in the *other* rings with the current seqno.
467  * This acts like a signal in the canonical semaphore.
468  */
469 static int
470 gen6_add_request(struct intel_ring_buffer *ring,
471                  u32 *seqno)
472 {
473         u32 mbox1_reg;
474         u32 mbox2_reg;
475         int ret;
476
477         ret = intel_ring_begin(ring, 10);
478         if (ret)
479                 return ret;
480
481         mbox1_reg = ring->signal_mbox[0];
482         mbox2_reg = ring->signal_mbox[1];
483
484         *seqno = i915_gem_next_request_seqno(ring);
485
486         update_mboxes(ring, *seqno, mbox1_reg);
487         update_mboxes(ring, *seqno, mbox2_reg);
488         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
489         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
490         intel_ring_emit(ring, *seqno);
491         intel_ring_emit(ring, MI_USER_INTERRUPT);
492         intel_ring_advance(ring);
493
494         return 0;
495 }
496
497 /**
498  * intel_ring_sync - sync the waiter to the signaller on seqno
499  *
500  * @waiter - ring that is waiting
501  * @signaller - ring which has, or will signal
502  * @seqno - seqno which the waiter will block on
503  */
504 static int
505 intel_ring_sync(struct intel_ring_buffer *waiter,
506                 struct intel_ring_buffer *signaller,
507                 int ring,
508                 u32 seqno)
509 {
510         int ret;
511         u32 dw1 = MI_SEMAPHORE_MBOX |
512                   MI_SEMAPHORE_COMPARE |
513                   MI_SEMAPHORE_REGISTER;
514
515         ret = intel_ring_begin(waiter, 4);
516         if (ret)
517                 return ret;
518
519         intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
520         intel_ring_emit(waiter, seqno);
521         intel_ring_emit(waiter, 0);
522         intel_ring_emit(waiter, MI_NOOP);
523         intel_ring_advance(waiter);
524
525         return 0;
526 }
527
528 int render_ring_sync_to(struct intel_ring_buffer *waiter,
529     struct intel_ring_buffer *signaller, u32 seqno);
530 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
531     struct intel_ring_buffer *signaller, u32 seqno);
532 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
533     struct intel_ring_buffer *signaller, u32 seqno);
534
535 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
536 int
537 render_ring_sync_to(struct intel_ring_buffer *waiter,
538                     struct intel_ring_buffer *signaller,
539                     u32 seqno)
540 {
541         KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
542             ("valid RCS semaphore"));
543         return intel_ring_sync(waiter,
544                                signaller,
545                                RCS,
546                                seqno);
547 }
548
549 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
550 int
551 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
552                       struct intel_ring_buffer *signaller,
553                       u32 seqno)
554 {
555         KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
556             ("Valid VCS semaphore"));
557         return intel_ring_sync(waiter,
558                                signaller,
559                                VCS,
560                                seqno);
561 }
562
563 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
564 int
565 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
566                       struct intel_ring_buffer *signaller,
567                       u32 seqno)
568 {
569         KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
570             ("Valid BCS semaphore"));
571         return intel_ring_sync(waiter,
572                                signaller,
573                                BCS,
574                                seqno);
575 }
576
577 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
578 do {                                                                    \
579         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
580                  PIPE_CONTROL_DEPTH_STALL);                             \
581         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
582         intel_ring_emit(ring__, 0);                                                     \
583         intel_ring_emit(ring__, 0);                                                     \
584 } while (0)
585
586 static int
587 pc_render_add_request(struct intel_ring_buffer *ring,
588                       uint32_t *result)
589 {
590         u32 seqno = i915_gem_next_request_seqno(ring);
591         struct pipe_control *pc = ring->private;
592         u32 scratch_addr = pc->gtt_offset + 128;
593         int ret;
594
595         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
596          * incoherent with writes to memory, i.e. completely fubar,
597          * so we need to use PIPE_NOTIFY instead.
598          *
599          * However, we also need to workaround the qword write
600          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
601          * memory before requesting an interrupt.
602          */
603         ret = intel_ring_begin(ring, 32);
604         if (ret)
605                 return ret;
606
607         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
608                         PIPE_CONTROL_WRITE_FLUSH |
609                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
610         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
611         intel_ring_emit(ring, seqno);
612         intel_ring_emit(ring, 0);
613         PIPE_CONTROL_FLUSH(ring, scratch_addr);
614         scratch_addr += 128; /* write to separate cachelines */
615         PIPE_CONTROL_FLUSH(ring, scratch_addr);
616         scratch_addr += 128;
617         PIPE_CONTROL_FLUSH(ring, scratch_addr);
618         scratch_addr += 128;
619         PIPE_CONTROL_FLUSH(ring, scratch_addr);
620         scratch_addr += 128;
621         PIPE_CONTROL_FLUSH(ring, scratch_addr);
622         scratch_addr += 128;
623         PIPE_CONTROL_FLUSH(ring, scratch_addr);
624         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
625                         PIPE_CONTROL_WRITE_FLUSH |
626                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
627                         PIPE_CONTROL_NOTIFY);
628         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
629         intel_ring_emit(ring, seqno);
630         intel_ring_emit(ring, 0);
631         intel_ring_advance(ring);
632
633         *result = seqno;
634         return 0;
635 }
636
637 static int
638 render_ring_add_request(struct intel_ring_buffer *ring,
639                         uint32_t *result)
640 {
641         u32 seqno = i915_gem_next_request_seqno(ring);
642         int ret;
643
644         ret = intel_ring_begin(ring, 4);
645         if (ret)
646                 return ret;
647
648         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
649         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
650         intel_ring_emit(ring, seqno);
651         intel_ring_emit(ring, MI_USER_INTERRUPT);
652         intel_ring_advance(ring);
653
654         *result = seqno;
655         return 0;
656 }
657
658  static u32
659 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
660 {
661         struct drm_device *dev = ring->dev;
662
663         /* Workaround to force correct ordering between irq and seqno writes on
664          * ivb (and maybe also on snb) by reading from a CS register (like
665          * ACTHD) before reading the status page. */
666         if (/* IS_GEN6(dev) || */IS_GEN7(dev))
667                 intel_ring_get_active_head(ring);
668         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
669 }
670
671 static uint32_t
672 ring_get_seqno(struct intel_ring_buffer *ring)
673 {
674         if (ring->status_page.page_addr == NULL)
675                 return (-1);
676         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
677 }
678
679 static uint32_t
680 pc_render_get_seqno(struct intel_ring_buffer *ring)
681 {
682         struct pipe_control *pc = ring->private;
683         if (pc != NULL)
684                 return pc->cpu_page[0];
685         else
686                 return (-1);
687 }
688
689 static void
690 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
691 {
692         dev_priv->gt_irq_mask &= ~mask;
693         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
694         POSTING_READ(GTIMR);
695 }
696
697 static void
698 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
699 {
700         dev_priv->gt_irq_mask |= mask;
701         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
702         POSTING_READ(GTIMR);
703 }
704
705 static void
706 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
707 {
708         dev_priv->irq_mask &= ~mask;
709         I915_WRITE(IMR, dev_priv->irq_mask);
710         POSTING_READ(IMR);
711 }
712
713 static void
714 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
715 {
716         dev_priv->irq_mask |= mask;
717         I915_WRITE(IMR, dev_priv->irq_mask);
718         POSTING_READ(IMR);
719 }
720
721 static bool
722 render_ring_get_irq(struct intel_ring_buffer *ring)
723 {
724         struct drm_device *dev = ring->dev;
725         drm_i915_private_t *dev_priv = dev->dev_private;
726
727         if (!dev->irq_enabled)
728                 return false;
729
730         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
731         if (ring->irq_refcount++ == 0) {
732                 if (HAS_PCH_SPLIT(dev))
733                         ironlake_enable_irq(dev_priv,
734                                             GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
735                 else
736                         i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
737         }
738
739         return true;
740 }
741
742 static void
743 render_ring_put_irq(struct intel_ring_buffer *ring)
744 {
745         struct drm_device *dev = ring->dev;
746         drm_i915_private_t *dev_priv = dev->dev_private;
747
748         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
749         if (--ring->irq_refcount == 0) {
750                 if (HAS_PCH_SPLIT(dev))
751                         ironlake_disable_irq(dev_priv,
752                                              GT_USER_INTERRUPT |
753                                              GT_PIPE_NOTIFY);
754                 else
755                         i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
756         }
757 }
758
759 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
760 {
761         struct drm_device *dev = ring->dev;
762         drm_i915_private_t *dev_priv = dev->dev_private;
763         uint32_t mmio = 0;
764
765         /* The ring status page addresses are no longer next to the rest of
766          * the ring registers as of gen7.
767          */
768         if (IS_GEN7(dev)) {
769                 switch (ring->id) {
770                 case RCS:
771                         mmio = RENDER_HWS_PGA_GEN7;
772                         break;
773                 case BCS:
774                         mmio = BLT_HWS_PGA_GEN7;
775                         break;
776                 case VCS:
777                         mmio = BSD_HWS_PGA_GEN7;
778                         break;
779                 }
780         } else if (IS_GEN6(dev)) {
781                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
782         } else {
783                 mmio = RING_HWS_PGA(ring->mmio_base);
784         }
785
786         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
787         POSTING_READ(mmio);
788 }
789
790 static int
791 bsd_ring_flush(struct intel_ring_buffer *ring,
792                uint32_t     invalidate_domains,
793                uint32_t     flush_domains)
794 {
795         int ret;
796
797         ret = intel_ring_begin(ring, 2);
798         if (ret)
799                 return ret;
800
801         intel_ring_emit(ring, MI_FLUSH);
802         intel_ring_emit(ring, MI_NOOP);
803         intel_ring_advance(ring);
804         return 0;
805 }
806
807 static int
808 ring_add_request(struct intel_ring_buffer *ring,
809                  uint32_t *result)
810 {
811         uint32_t seqno;
812         int ret;
813
814         ret = intel_ring_begin(ring, 4);
815         if (ret)
816                 return ret;
817
818         seqno = i915_gem_next_request_seqno(ring);
819
820         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
821         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
822         intel_ring_emit(ring, seqno);
823         intel_ring_emit(ring, MI_USER_INTERRUPT);
824         intel_ring_advance(ring);
825
826         *result = seqno;
827         return 0;
828 }
829
830 static bool
831 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
832 {
833         struct drm_device *dev = ring->dev;
834         drm_i915_private_t *dev_priv = dev->dev_private;
835
836         if (!dev->irq_enabled)
837                return false;
838
839         gen6_gt_force_wake_get(dev_priv);
840
841         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
842         if (ring->irq_refcount++ == 0) {
843                 ring->irq_mask &= ~rflag;
844                 I915_WRITE_IMR(ring, ring->irq_mask);
845                 ironlake_enable_irq(dev_priv, gflag);
846         }
847
848         return true;
849 }
850
851 static void
852 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
853 {
854         struct drm_device *dev = ring->dev;
855         drm_i915_private_t *dev_priv = dev->dev_private;
856
857         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
858         if (--ring->irq_refcount == 0) {
859                 ring->irq_mask |= rflag;
860                 I915_WRITE_IMR(ring, ring->irq_mask);
861                 ironlake_disable_irq(dev_priv, gflag);
862         }
863
864         gen6_gt_force_wake_put(dev_priv);
865 }
866
867 static bool
868 bsd_ring_get_irq(struct intel_ring_buffer *ring)
869 {
870         struct drm_device *dev = ring->dev;
871         drm_i915_private_t *dev_priv = dev->dev_private;
872
873         if (!dev->irq_enabled)
874                 return false;
875
876         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
877         if (ring->irq_refcount++ == 0) {
878                 if (IS_G4X(dev))
879                         i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
880                 else
881                         ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
882         }
883
884         return true;
885 }
886 static void
887 bsd_ring_put_irq(struct intel_ring_buffer *ring)
888 {
889         struct drm_device *dev = ring->dev;
890         drm_i915_private_t *dev_priv = dev->dev_private;
891
892         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
893         if (--ring->irq_refcount == 0) {
894                 if (IS_G4X(dev))
895                         i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
896                 else
897                         ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
898         }
899 }
900
901 static int
902 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
903     uint32_t length)
904 {
905         int ret;
906
907         ret = intel_ring_begin(ring, 2);
908         if (ret)
909                 return ret;
910
911         intel_ring_emit(ring,
912                         MI_BATCH_BUFFER_START | (2 << 6) |
913                         MI_BATCH_NON_SECURE_I965);
914         intel_ring_emit(ring, offset);
915         intel_ring_advance(ring);
916
917         return 0;
918 }
919
920 static int
921 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
922                                 uint32_t offset, uint32_t len)
923 {
924         struct drm_device *dev = ring->dev;
925         int ret;
926
927         if (IS_I830(dev) || IS_845G(dev)) {
928                 ret = intel_ring_begin(ring, 4);
929                 if (ret)
930                         return ret;
931
932                 intel_ring_emit(ring, MI_BATCH_BUFFER);
933                 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
934                 intel_ring_emit(ring, offset + len - 8);
935                 intel_ring_emit(ring, 0);
936         } else {
937                 ret = intel_ring_begin(ring, 2);
938                 if (ret)
939                         return ret;
940
941                 if (INTEL_INFO(dev)->gen >= 4) {
942                         intel_ring_emit(ring,
943                                         MI_BATCH_BUFFER_START | (2 << 6) |
944                                         MI_BATCH_NON_SECURE_I965);
945                         intel_ring_emit(ring, offset);
946                 } else {
947                         intel_ring_emit(ring,
948                                         MI_BATCH_BUFFER_START | (2 << 6));
949                         intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
950                 }
951         }
952         intel_ring_advance(ring);
953
954         return 0;
955 }
956
957 static void cleanup_status_page(struct intel_ring_buffer *ring)
958 {
959         drm_i915_private_t *dev_priv = ring->dev->dev_private;
960         struct drm_i915_gem_object *obj;
961
962         obj = ring->status_page.obj;
963         if (obj == NULL)
964                 return;
965
966         pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
967         kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
968             PAGE_SIZE);
969         i915_gem_object_unpin(obj);
970         drm_gem_object_unreference(&obj->base);
971         ring->status_page.obj = NULL;
972
973         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
974 }
975
976 static int init_status_page(struct intel_ring_buffer *ring)
977 {
978         struct drm_device *dev = ring->dev;
979         drm_i915_private_t *dev_priv = dev->dev_private;
980         struct drm_i915_gem_object *obj;
981         int ret;
982
983         obj = i915_gem_alloc_object(dev, 4096);
984         if (obj == NULL) {
985                 DRM_ERROR("Failed to allocate status page\n");
986                 ret = -ENOMEM;
987                 goto err;
988         }
989
990         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
991
992         ret = i915_gem_object_pin(obj, 4096, true);
993         if (ret != 0) {
994                 goto err_unref;
995         }
996
997         ring->status_page.gfx_addr = obj->gtt_offset;
998         ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
999             PAGE_SIZE, PAGE_SIZE);
1000         if (ring->status_page.page_addr == NULL) {
1001                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1002                 goto err_unpin;
1003         }
1004         pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1005             1);
1006         pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1007             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1008         ring->status_page.obj = obj;
1009         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1010
1011         intel_ring_setup_status_page(ring);
1012         DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1013                         ring->name, ring->status_page.gfx_addr);
1014
1015         return 0;
1016
1017 err_unpin:
1018         i915_gem_object_unpin(obj);
1019 err_unref:
1020         drm_gem_object_unreference(&obj->base);
1021 err:
1022         return ret;
1023 }
1024
1025 static
1026 int intel_init_ring_buffer(struct drm_device *dev,
1027                            struct intel_ring_buffer *ring)
1028 {
1029         struct drm_i915_gem_object *obj;
1030         int ret;
1031
1032         ring->dev = dev;
1033         INIT_LIST_HEAD(&ring->active_list);
1034         INIT_LIST_HEAD(&ring->request_list);
1035         INIT_LIST_HEAD(&ring->gpu_write_list);
1036
1037         lockinit(&ring->irq_lock, "ringb", 0, LK_CANRECURSE);
1038         ring->irq_mask = ~0;
1039
1040         if (I915_NEED_GFX_HWS(dev)) {
1041                 ret = init_status_page(ring);
1042                 if (ret)
1043                         return ret;
1044         }
1045
1046         obj = i915_gem_alloc_object(dev, ring->size);
1047         if (obj == NULL) {
1048                 DRM_ERROR("Failed to allocate ringbuffer\n");
1049                 ret = -ENOMEM;
1050                 goto err_hws;
1051         }
1052
1053         ring->obj = obj;
1054
1055         ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1056         if (ret)
1057                 goto err_unref;
1058
1059         ring->map.size = ring->size;
1060         ring->map.offset = dev->agp->base + obj->gtt_offset;
1061         ring->map.type = 0;
1062         ring->map.flags = 0;
1063         ring->map.mtrr = 0;
1064
1065         drm_core_ioremap_wc(&ring->map, dev);
1066         if (ring->map.virtual == NULL) {
1067                 DRM_ERROR("Failed to map ringbuffer.\n");
1068                 ret = -EINVAL;
1069                 goto err_unpin;
1070         }
1071
1072         ring->virtual_start = ring->map.virtual;
1073         ret = ring->init(ring);
1074         if (ret)
1075                 goto err_unmap;
1076
1077         /* Workaround an erratum on the i830 which causes a hang if
1078          * the TAIL pointer points to within the last 2 cachelines
1079          * of the buffer.
1080          */
1081         ring->effective_size = ring->size;
1082         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1083                 ring->effective_size -= 128;
1084
1085         return 0;
1086
1087 err_unmap:
1088         drm_core_ioremapfree(&ring->map, dev);
1089 err_unpin:
1090         i915_gem_object_unpin(obj);
1091 err_unref:
1092         drm_gem_object_unreference(&obj->base);
1093         ring->obj = NULL;
1094 err_hws:
1095         cleanup_status_page(ring);
1096         return ret;
1097 }
1098
1099 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1100 {
1101         struct drm_i915_private *dev_priv;
1102         int ret;
1103
1104         if (ring->obj == NULL)
1105                 return;
1106
1107         /* Disable the ring buffer. The ring must be idle at this point */
1108         dev_priv = ring->dev->dev_private;
1109         ret = intel_wait_ring_idle(ring);
1110         I915_WRITE_CTL(ring, 0);
1111
1112         drm_core_ioremapfree(&ring->map, ring->dev);
1113
1114         i915_gem_object_unpin(ring->obj);
1115         drm_gem_object_unreference(&ring->obj->base);
1116         ring->obj = NULL;
1117
1118         if (ring->cleanup)
1119                 ring->cleanup(ring);
1120
1121         cleanup_status_page(ring);
1122 }
1123
1124 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1125 {
1126         unsigned int *virt;
1127         int rem = ring->size - ring->tail;
1128
1129         if (ring->space < rem) {
1130                 int ret = intel_wait_ring_buffer(ring, rem);
1131                 if (ret)
1132                         return ret;
1133         }
1134
1135         virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1136         rem /= 8;
1137         while (rem--) {
1138                 *virt++ = MI_NOOP;
1139                 *virt++ = MI_NOOP;
1140         }
1141
1142         ring->tail = 0;
1143         ring->space = ring_space(ring);
1144
1145         return 0;
1146 }
1147
1148 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1149 {
1150         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1151         bool was_interruptible;
1152         int ret;
1153
1154         /* XXX As we have not yet audited all the paths to check that
1155          * they are ready for ERESTARTSYS from intel_ring_begin, do not
1156          * allow us to be interruptible by a signal.
1157          */
1158         was_interruptible = dev_priv->mm.interruptible;
1159         dev_priv->mm.interruptible = false;
1160
1161         ret = i915_wait_request(ring, seqno, true);
1162
1163         dev_priv->mm.interruptible = was_interruptible;
1164
1165         return ret;
1166 }
1167
1168 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1169 {
1170         struct drm_i915_gem_request *request;
1171         u32 seqno = 0;
1172         int ret;
1173
1174         i915_gem_retire_requests_ring(ring);
1175
1176         if (ring->last_retired_head != -1) {
1177                 ring->head = ring->last_retired_head;
1178                 ring->last_retired_head = -1;
1179                 ring->space = ring_space(ring);
1180                 if (ring->space >= n)
1181                         return 0;
1182         }
1183
1184         list_for_each_entry(request, &ring->request_list, list) {
1185                 int space;
1186
1187                 if (request->tail == -1)
1188                         continue;
1189
1190                 space = request->tail - (ring->tail + 8);
1191                 if (space < 0)
1192                         space += ring->size;
1193                 if (space >= n) {
1194                         seqno = request->seqno;
1195                         break;
1196                 }
1197
1198                 /* Consume this request in case we need more space than
1199                  * is available and so need to prevent a race between
1200                  * updating last_retired_head and direct reads of
1201                  * I915_RING_HEAD. It also provides a nice sanity check.
1202                  */
1203                 request->tail = -1;
1204         }
1205
1206         if (seqno == 0)
1207                 return -ENOSPC;
1208
1209         ret = intel_ring_wait_seqno(ring, seqno);
1210         if (ret)
1211                 return ret;
1212
1213         if (ring->last_retired_head == -1)
1214                 return -ENOSPC;
1215
1216         ring->head = ring->last_retired_head;
1217         ring->last_retired_head = -1;
1218         ring->space = ring_space(ring);
1219         if (ring->space < n)
1220                 return -ENOSPC;
1221
1222         return 0;
1223 }
1224
1225 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1226 {
1227         struct drm_device *dev = ring->dev;
1228         struct drm_i915_private *dev_priv = dev->dev_private;
1229         int end;
1230         int ret;
1231
1232         ret = intel_ring_wait_request(ring, n);
1233         if (ret != -ENOSPC)
1234                 return ret;
1235
1236         if (drm_core_check_feature(dev, DRIVER_GEM))
1237                 /* With GEM the hangcheck timer should kick us out of the loop,
1238                  * leaving it early runs the risk of corrupting GEM state (due
1239                  * to running on almost untested codepaths). But on resume
1240                  * timers don't work yet, so prevent a complete hang in that
1241                  * case by choosing an insanely large timeout. */
1242                 end = ticks + hz * 60;
1243         else
1244                 end = ticks + hz * 3;
1245         do {
1246                 ring->head = I915_READ_HEAD(ring);
1247                 ring->space = ring_space(ring);
1248                 if (ring->space >= n) {
1249                         return 0;
1250                 }
1251
1252 #if 0
1253                 if (dev->primary->master) {
1254                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1255                         if (master_priv->sarea_priv)
1256                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1257                 }
1258 #else
1259                 if (dev_priv->sarea_priv)
1260                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1261 #endif
1262
1263                 DELAY(1000);
1264                 if (atomic_load_acq_32(&dev_priv->mm.wedged) != 0) {
1265                         return -EAGAIN;
1266                 }
1267         } while (!time_after(ticks, end));
1268         return -EBUSY;
1269 }
1270
1271 int intel_ring_begin(struct intel_ring_buffer *ring,
1272                      int num_dwords)
1273 {
1274         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1275         int n = 4*num_dwords;
1276         int ret;
1277
1278         if (atomic_load_acq_int(&dev_priv->mm.wedged))
1279                 return -EIO;
1280
1281         if (ring->tail + n > ring->effective_size) {
1282                 ret = intel_wrap_ring_buffer(ring);
1283                 if (ret != 0)
1284                         return ret;
1285         }
1286
1287         if (ring->space < n) {
1288                 ret = intel_wait_ring_buffer(ring, n);
1289                 if (ret != 0)
1290                         return ret;
1291         }
1292
1293         ring->space -= n;
1294         return 0;
1295 }
1296
1297 void intel_ring_advance(struct intel_ring_buffer *ring)
1298 {
1299         ring->tail &= ring->size - 1;
1300         ring->write_tail(ring, ring->tail);
1301 }
1302
1303 static const struct intel_ring_buffer render_ring = {
1304         .name                   = "render ring",
1305         .id                     = RCS,
1306         .mmio_base              = RENDER_RING_BASE,
1307         .size                   = 32 * PAGE_SIZE,
1308         .init                   = init_render_ring,
1309         .write_tail             = ring_write_tail,
1310         .flush                  = render_ring_flush,
1311         .add_request            = render_ring_add_request,
1312         .get_seqno              = ring_get_seqno,
1313         .irq_get                = render_ring_get_irq,
1314         .irq_put                = render_ring_put_irq,
1315         .dispatch_execbuffer    = render_ring_dispatch_execbuffer,
1316         .cleanup                = render_ring_cleanup,
1317         .sync_to                = render_ring_sync_to,
1318         .semaphore_register     = {MI_SEMAPHORE_SYNC_INVALID,
1319                                    MI_SEMAPHORE_SYNC_RV,
1320                                    MI_SEMAPHORE_SYNC_RB},
1321         .signal_mbox            = {GEN6_VRSYNC, GEN6_BRSYNC},
1322 };
1323
1324 /* ring buffer for bit-stream decoder */
1325
1326 static const struct intel_ring_buffer bsd_ring = {
1327         .name                   = "bsd ring",
1328         .id                     = VCS,
1329         .mmio_base              = BSD_RING_BASE,
1330         .size                   = 32 * PAGE_SIZE,
1331         .init                   = init_ring_common,
1332         .write_tail             = ring_write_tail,
1333         .flush                  = bsd_ring_flush,
1334         .add_request            = ring_add_request,
1335         .get_seqno              = ring_get_seqno,
1336         .irq_get                = bsd_ring_get_irq,
1337         .irq_put                = bsd_ring_put_irq,
1338         .dispatch_execbuffer    = ring_dispatch_execbuffer,
1339 };
1340
1341
1342 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1343                                      uint32_t value)
1344 {
1345         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1346
1347         /* Every tail move must follow the sequence below */
1348         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1349             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1350             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1351         I915_WRITE(GEN6_BSD_RNCID, 0x0);
1352
1353         if (_intel_wait_for(ring->dev,
1354             (I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1355              GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0, 50,
1356             true, "915g6i") != 0)
1357                 DRM_ERROR("timed out waiting for IDLE Indicator\n");
1358
1359         I915_WRITE_TAIL(ring, value);
1360         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1361             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1362             GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1363 }
1364
1365 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1366                            uint32_t invalidate, uint32_t flush)
1367 {
1368         uint32_t cmd;
1369         int ret;
1370
1371         ret = intel_ring_begin(ring, 4);
1372         if (ret)
1373                 return ret;
1374
1375         cmd = MI_FLUSH_DW;
1376         if (invalidate & I915_GEM_GPU_DOMAINS)
1377                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1378         intel_ring_emit(ring, cmd);
1379         intel_ring_emit(ring, 0);
1380         intel_ring_emit(ring, 0);
1381         intel_ring_emit(ring, MI_NOOP);
1382         intel_ring_advance(ring);
1383         return 0;
1384 }
1385
1386 static int
1387 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1388                               uint32_t offset, uint32_t len)
1389 {
1390         int ret;
1391
1392         ret = intel_ring_begin(ring, 2);
1393         if (ret)
1394                 return ret;
1395
1396         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1397         /* bit0-7 is the length on GEN6+ */
1398         intel_ring_emit(ring, offset);
1399         intel_ring_advance(ring);
1400
1401         return 0;
1402 }
1403
1404 static bool
1405 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1406 {
1407         return gen6_ring_get_irq(ring,
1408                                  GT_USER_INTERRUPT,
1409                                  GEN6_RENDER_USER_INTERRUPT);
1410 }
1411
1412 static void
1413 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1414 {
1415         return gen6_ring_put_irq(ring,
1416                                  GT_USER_INTERRUPT,
1417                                  GEN6_RENDER_USER_INTERRUPT);
1418 }
1419
1420 static bool
1421 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1422 {
1423         return gen6_ring_get_irq(ring,
1424                                  GT_GEN6_BSD_USER_INTERRUPT,
1425                                  GEN6_BSD_USER_INTERRUPT);
1426 }
1427
1428 static void
1429 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1430 {
1431         return gen6_ring_put_irq(ring,
1432                                  GT_GEN6_BSD_USER_INTERRUPT,
1433                                  GEN6_BSD_USER_INTERRUPT);
1434 }
1435
1436 /* ring buffer for Video Codec for Gen6+ */
1437 static const struct intel_ring_buffer gen6_bsd_ring = {
1438         .name                   = "gen6 bsd ring",
1439         .id                     = VCS,
1440         .mmio_base              = GEN6_BSD_RING_BASE,
1441         .size                   = 32 * PAGE_SIZE,
1442         .init                   = init_ring_common,
1443         .write_tail             = gen6_bsd_ring_write_tail,
1444         .flush                  = gen6_ring_flush,
1445         .add_request            = gen6_add_request,
1446         .get_seqno              = gen6_ring_get_seqno,
1447         .irq_get                = gen6_bsd_ring_get_irq,
1448         .irq_put                = gen6_bsd_ring_put_irq,
1449         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1450         .sync_to                = gen6_bsd_ring_sync_to,
1451         .semaphore_register     = {MI_SEMAPHORE_SYNC_VR,
1452                                    MI_SEMAPHORE_SYNC_INVALID,
1453                                    MI_SEMAPHORE_SYNC_VB},
1454         .signal_mbox            = {GEN6_RVSYNC, GEN6_BVSYNC},
1455 };
1456
1457 /* Blitter support (SandyBridge+) */
1458
1459 static bool
1460 blt_ring_get_irq(struct intel_ring_buffer *ring)
1461 {
1462         return gen6_ring_get_irq(ring,
1463                                  GT_BLT_USER_INTERRUPT,
1464                                  GEN6_BLITTER_USER_INTERRUPT);
1465 }
1466
1467 static void
1468 blt_ring_put_irq(struct intel_ring_buffer *ring)
1469 {
1470         gen6_ring_put_irq(ring,
1471                           GT_BLT_USER_INTERRUPT,
1472                           GEN6_BLITTER_USER_INTERRUPT);
1473 }
1474
1475 static int blt_ring_flush(struct intel_ring_buffer *ring,
1476                           uint32_t invalidate, uint32_t flush)
1477 {
1478         uint32_t cmd;
1479         int ret;
1480
1481         ret = intel_ring_begin(ring, 4);
1482         if (ret)
1483                 return ret;
1484
1485         cmd = MI_FLUSH_DW;
1486         if (invalidate & I915_GEM_DOMAIN_RENDER)
1487                 cmd |= MI_INVALIDATE_TLB;
1488         intel_ring_emit(ring, cmd);
1489         intel_ring_emit(ring, 0);
1490         intel_ring_emit(ring, 0);
1491         intel_ring_emit(ring, MI_NOOP);
1492         intel_ring_advance(ring);
1493         return 0;
1494 }
1495
1496 static const struct intel_ring_buffer gen6_blt_ring = {
1497         .name                   = "blt ring",
1498         .id                     = BCS,
1499         .mmio_base              = BLT_RING_BASE,
1500         .size                   = 32 * PAGE_SIZE,
1501         .init                   = init_ring_common,
1502         .write_tail             = ring_write_tail,
1503         .flush                  = blt_ring_flush,
1504         .add_request            = gen6_add_request,
1505         .get_seqno              = gen6_ring_get_seqno,
1506         .irq_get                = blt_ring_get_irq,
1507         .irq_put                = blt_ring_put_irq,
1508         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1509         .sync_to                = gen6_blt_ring_sync_to,
1510         .semaphore_register     = {MI_SEMAPHORE_SYNC_BR,
1511                                    MI_SEMAPHORE_SYNC_BV,
1512                                    MI_SEMAPHORE_SYNC_INVALID},
1513         .signal_mbox            = {GEN6_RBSYNC, GEN6_VBSYNC},
1514 };
1515
1516 int intel_init_render_ring_buffer(struct drm_device *dev)
1517 {
1518         drm_i915_private_t *dev_priv = dev->dev_private;
1519         struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1520
1521         *ring = render_ring;
1522         if (INTEL_INFO(dev)->gen >= 6) {
1523                 ring->add_request = gen6_add_request;
1524                 ring->flush = gen6_render_ring_flush;
1525                 ring->irq_get = gen6_render_ring_get_irq;
1526                 ring->irq_put = gen6_render_ring_put_irq;
1527                 ring->get_seqno = gen6_ring_get_seqno;
1528         } else if (IS_GEN5(dev)) {
1529                 ring->add_request = pc_render_add_request;
1530                 ring->get_seqno = pc_render_get_seqno;
1531         }
1532
1533         if (!I915_NEED_GFX_HWS(dev)) {
1534                 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1535                 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1536         }
1537
1538         return intel_init_ring_buffer(dev, ring);
1539 }
1540
1541 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1542     uint32_t size)
1543 {
1544         drm_i915_private_t *dev_priv = dev->dev_private;
1545         struct intel_ring_buffer *ring = &dev_priv->rings[RCS];
1546
1547         *ring = render_ring;
1548         if (INTEL_INFO(dev)->gen >= 6) {
1549                 ring->add_request = gen6_add_request;
1550                 ring->irq_get = gen6_render_ring_get_irq;
1551                 ring->irq_put = gen6_render_ring_put_irq;
1552         } else if (IS_GEN5(dev)) {
1553                 ring->add_request = pc_render_add_request;
1554                 ring->get_seqno = pc_render_get_seqno;
1555         }
1556
1557         ring->dev = dev;
1558         INIT_LIST_HEAD(&ring->active_list);
1559         INIT_LIST_HEAD(&ring->request_list);
1560         INIT_LIST_HEAD(&ring->gpu_write_list);
1561
1562         ring->size = size;
1563         ring->effective_size = ring->size;
1564         if (IS_I830(ring->dev))
1565                 ring->effective_size -= 128;
1566
1567         ring->map.offset = start;
1568         ring->map.size = size;
1569         ring->map.type = 0;
1570         ring->map.flags = 0;
1571         ring->map.mtrr = 0;
1572
1573         drm_core_ioremap_wc(&ring->map, dev);
1574         if (ring->map.virtual == NULL) {
1575                 DRM_ERROR("can not ioremap virtual address for"
1576                           " ring buffer\n");
1577                 return -ENOMEM;
1578         }
1579
1580         ring->virtual_start = (void *)ring->map.virtual;
1581         return 0;
1582 }
1583
1584 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1585 {
1586         drm_i915_private_t *dev_priv = dev->dev_private;
1587         struct intel_ring_buffer *ring = &dev_priv->rings[VCS];
1588
1589         if (IS_GEN6(dev) || IS_GEN7(dev))
1590                 *ring = gen6_bsd_ring;
1591         else
1592                 *ring = bsd_ring;
1593
1594         return intel_init_ring_buffer(dev, ring);
1595 }
1596
1597 int intel_init_blt_ring_buffer(struct drm_device *dev)
1598 {
1599         drm_i915_private_t *dev_priv = dev->dev_private;
1600         struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
1601
1602         *ring = gen6_blt_ring;
1603
1604         return intel_init_ring_buffer(dev, ring);
1605 }