Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 #include <linux/bitmap.h>
35 #include <linux/highmem.h>
36
37 /**
38  * DOC: Global GTT views
39  *
40  * Background and previous state
41  *
42  * Historically objects could exists (be bound) in global GTT space only as
43  * singular instances with a view representing all of the object's backing pages
44  * in a linear fashion. This view will be called a normal view.
45  *
46  * To support multiple views of the same object, where the number of mapped
47  * pages is not equal to the backing store, or where the layout of the pages
48  * is not linear, concept of a GGTT view was added.
49  *
50  * One example of an alternative view is a stereo display driven by a single
51  * image. In this case we would have a framebuffer looking like this
52  * (2x2 pages):
53  *
54  *    12
55  *    34
56  *
57  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58  * rendering. In contrast, fed to the display engine would be an alternative
59  * view which could look something like this:
60  *
61  *   1212
62  *   3434
63  *
64  * In this example both the size and layout of pages in the alternative view is
65  * different from the normal view.
66  *
67  * Implementation and usage
68  *
69  * GGTT views are implemented using VMAs and are distinguished via enum
70  * i915_ggtt_view_type and struct i915_ggtt_view.
71  *
72  * A new flavour of core GEM functions which work with GGTT bound objects were
73  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74  * renaming  in large amounts of code. They take the struct i915_ggtt_view
75  * parameter encapsulating all metadata required to implement a view.
76  *
77  * As a helper for callers which are only interested in the normal view,
78  * globally const i915_ggtt_view_normal singleton instance exists. All old core
79  * GEM API functions, the ones not taking the view parameter, are operating on,
80  * or with the normal GGTT view.
81  *
82  * Code wanting to add or use a new GGTT view needs to:
83  *
84  * 1. Add a new enum with a suitable name.
85  * 2. Extend the metadata in the i915_ggtt_view structure if required.
86  * 3. Add support to i915_get_vma_pages().
87  *
88  * New views are required to build a scatter-gather table from within the
89  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90  * exists for the lifetime of an VMA.
91  *
92  * Core API is designed to have copy semantics which means that passed in
93  * struct i915_ggtt_view does not need to be persistent (left around after
94  * calling the core API functions).
95  *
96  */
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
104 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
105
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108         bool has_aliasing_ppgtt;
109         bool has_full_ppgtt;
110
111         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
112         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
113
114         if (intel_vgpu_active(dev))
115                 has_full_ppgtt = false; /* emulation is too hard */
116
117         /*
118          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
119          * execlists, the sole mechanism available to submit work.
120          */
121         if (INTEL_INFO(dev)->gen < 9 &&
122             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
123                 return 0;
124
125         if (enable_ppgtt == 1)
126                 return 1;
127
128         if (enable_ppgtt == 2 && has_full_ppgtt)
129                 return 2;
130
131 #ifdef CONFIG_INTEL_IOMMU
132         /* Disable ppgtt on SNB if VT-d is on. */
133         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
134                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
135                 return 0;
136         }
137 #endif
138
139         /* Early VLV doesn't have this */
140         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
141             dev->pdev->revision < 0xb) {
142                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
143                 return 0;
144         }
145
146         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
147                 return 2;
148         else
149                 return has_aliasing_ppgtt ? 1 : 0;
150 }
151
152 static void ppgtt_bind_vma(struct i915_vma *vma,
153                            enum i915_cache_level cache_level,
154                            u32 flags);
155 static void ppgtt_unbind_vma(struct i915_vma *vma);
156
157 static inline gen8_pte_t gen8_pte_encode(dma_addr_t addr,
158                                          enum i915_cache_level level,
159                                          bool valid)
160 {
161         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
162         pte |= addr;
163
164         switch (level) {
165         case I915_CACHE_NONE:
166                 pte |= PPAT_UNCACHED_INDEX;
167                 break;
168         case I915_CACHE_WT:
169                 pte |= PPAT_DISPLAY_ELLC_INDEX;
170                 break;
171         default:
172                 pte |= PPAT_CACHED_INDEX;
173                 break;
174         }
175
176         return pte;
177 }
178
179 static inline gen8_pde_t gen8_pde_encode(struct drm_device *dev,
180                                           dma_addr_t addr,
181                                           enum i915_cache_level level)
182 {
183         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
184         pde |= addr;
185         if (level != I915_CACHE_NONE)
186                 pde |= PPAT_CACHED_PDE_INDEX;
187         else
188                 pde |= PPAT_UNCACHED_INDEX;
189         return pde;
190 }
191
192 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
193                                  enum i915_cache_level level,
194                                  bool valid, u32 unused)
195 {
196         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
197         pte |= GEN6_PTE_ADDR_ENCODE(addr);
198
199         switch (level) {
200         case I915_CACHE_L3_LLC:
201         case I915_CACHE_LLC:
202                 pte |= GEN6_PTE_CACHE_LLC;
203                 break;
204         case I915_CACHE_NONE:
205                 pte |= GEN6_PTE_UNCACHED;
206                 break;
207         default:
208                 MISSING_CASE(level);
209         }
210
211         return pte;
212 }
213
214 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
215                                  enum i915_cache_level level,
216                                  bool valid, u32 unused)
217 {
218         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
219         pte |= GEN6_PTE_ADDR_ENCODE(addr);
220
221         switch (level) {
222         case I915_CACHE_L3_LLC:
223                 pte |= GEN7_PTE_CACHE_L3_LLC;
224                 break;
225         case I915_CACHE_LLC:
226                 pte |= GEN6_PTE_CACHE_LLC;
227                 break;
228         case I915_CACHE_NONE:
229                 pte |= GEN6_PTE_UNCACHED;
230                 break;
231         default:
232                 MISSING_CASE(level);
233         }
234
235         return pte;
236 }
237
238 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
239                                  enum i915_cache_level level,
240                                  bool valid, u32 flags)
241 {
242         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
243         pte |= GEN6_PTE_ADDR_ENCODE(addr);
244
245         if (!(flags & PTE_READ_ONLY))
246                 pte |= BYT_PTE_WRITEABLE;
247
248         if (level != I915_CACHE_NONE)
249                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
250
251         return pte;
252 }
253
254 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
255                                  enum i915_cache_level level,
256                                  bool valid, u32 unused)
257 {
258         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259         pte |= HSW_PTE_ADDR_ENCODE(addr);
260
261         if (level != I915_CACHE_NONE)
262                 pte |= HSW_WB_LLC_AGE3;
263
264         return pte;
265 }
266
267 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
268                                   enum i915_cache_level level,
269                                   bool valid, u32 unused)
270 {
271         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
272         pte |= HSW_PTE_ADDR_ENCODE(addr);
273
274         switch (level) {
275         case I915_CACHE_NONE:
276                 break;
277         case I915_CACHE_WT:
278                 pte |= HSW_WT_ELLC_LLC_AGE3;
279                 break;
280         default:
281                 pte |= HSW_WB_ELLC_LLC_AGE3;
282                 break;
283         }
284
285         return pte;
286 }
287
288 #define i915_dma_unmap_single(px, dev) \
289         __i915_dma_unmap_single((px)->daddr, dev)
290
291 static inline void __i915_dma_unmap_single(dma_addr_t daddr,
292                                         struct drm_device *dev)
293 {
294 #if 0
295         struct device *device = &dev->pdev->dev;
296
297         dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
298 #endif
299 }
300
301 /**
302  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
303  * @px: Page table/dir/etc to get a DMA map for
304  * @dev:        drm device
305  *
306  * Page table allocations are unified across all gens. They always require a
307  * single 4k allocation, as well as a DMA mapping. If we keep the structs
308  * symmetric here, the simple macro covers us for every page table type.
309  *
310  * Return: 0 if success.
311  */
312 #define i915_dma_map_single(px, dev) \
313         i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
314
315 static inline int i915_dma_map_page_single(struct vm_page *page,
316                                            struct drm_device *dev,
317                                            dma_addr_t *daddr)
318 {
319         struct device *device = dev->pdev->dev;
320
321         *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
322         if (dma_mapping_error(device, *daddr))
323                 return -ENOMEM;
324
325         return 0;
326 }
327
328 static void unmap_and_free_pt(struct i915_page_table_entry *pt,
329                                struct drm_device *dev)
330 {
331         if (WARN_ON(!pt->page))
332                 return;
333
334         i915_dma_unmap_single(pt, dev);
335         __free_page(pt->page);
336         kfree(pt->used_ptes);
337         kfree(pt);
338 }
339
340 static struct i915_page_table_entry *alloc_pt_single(struct drm_device *dev)
341 {
342         struct i915_page_table_entry *pt;
343         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
344                 GEN8_PTES : GEN6_PTES;
345         int ret = -ENOMEM;
346
347         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
348         if (!pt)
349                 return ERR_PTR(-ENOMEM);
350
351         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
352                                 GFP_KERNEL);
353
354         if (!pt->used_ptes)
355                 goto fail_bitmap;
356
357         pt->page = alloc_page(GFP_KERNEL);
358         if (!pt->page)
359                 goto fail_page;
360
361         ret = i915_dma_map_single(pt, dev);
362         if (ret)
363                 goto fail_dma;
364
365         return pt;
366
367 fail_dma:
368         __free_page(pt->page);
369 fail_page:
370         kfree(pt->used_ptes);
371 fail_bitmap:
372         kfree(pt);
373
374         return ERR_PTR(ret);
375 }
376
377 /**
378  * alloc_pt_range() - Allocate a multiple page tables
379  * @pd:         The page directory which will have at least @count entries
380  *              available to point to the allocated page tables.
381  * @pde:        First page directory entry for which we are allocating.
382  * @count:      Number of pages to allocate.
383  * @dev:        DRM device.
384  *
385  * Allocates multiple page table pages and sets the appropriate entries in the
386  * page table structure within the page directory. Function cleans up after
387  * itself on any failures.
388  *
389  * Return: 0 if allocation succeeded.
390  */
391 static int alloc_pt_range(struct i915_page_directory_entry *pd, uint16_t pde, size_t count,
392                           struct drm_device *dev)
393 {
394         int i, ret;
395
396         /* 512 is the max page tables per page_directory on any platform. */
397         if (WARN_ON(pde + count > I915_PDES))
398                 return -EINVAL;
399
400         for (i = pde; i < pde + count; i++) {
401                 struct i915_page_table_entry *pt = alloc_pt_single(dev);
402
403                 if (IS_ERR(pt)) {
404                         ret = PTR_ERR(pt);
405                         goto err_out;
406                 }
407                 WARN(pd->page_table[i],
408                      "Leaking page directory entry %d (%p)\n",
409                      i, pd->page_table[i]);
410                 pd->page_table[i] = pt;
411         }
412
413         return 0;
414
415 err_out:
416         while (i-- > pde)
417                 unmap_and_free_pt(pd->page_table[i], dev);
418         return ret;
419 }
420
421 static void unmap_and_free_pd(struct i915_page_directory_entry *pd)
422 {
423         if (pd->page) {
424                 __free_page(pd->page);
425                 kfree(pd);
426         }
427 }
428
429 static struct i915_page_directory_entry *alloc_pd_single(void)
430 {
431         struct i915_page_directory_entry *pd;
432
433         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
434         if (!pd)
435                 return ERR_PTR(-ENOMEM);
436
437         pd->page = alloc_page(GFP_KERNEL | __GFP_ZERO);
438         if (!pd->page) {
439                 kfree(pd);
440                 return ERR_PTR(-ENOMEM);
441         }
442
443         return pd;
444 }
445
446 /* Broadwell Page Directory Pointer Descriptors */
447 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
448                            uint64_t val)
449 {
450         int ret;
451
452         BUG_ON(entry >= 4);
453
454         ret = intel_ring_begin(ring, 6);
455         if (ret)
456                 return ret;
457
458         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
459         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
460         intel_ring_emit(ring, (u32)(val >> 32));
461         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
462         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
463         intel_ring_emit(ring, (u32)(val));
464         intel_ring_advance(ring);
465
466         return 0;
467 }
468
469 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
470                           struct intel_engine_cs *ring)
471 {
472         int i, ret;
473
474         /* bit of a hack to find the actual last used pd */
475         int used_pd = ppgtt->num_pd_entries / I915_PDES;
476
477         for (i = used_pd - 1; i >= 0; i--) {
478                 dma_addr_t addr = ppgtt->pdp.page_directory[i]->daddr;
479                 ret = gen8_write_pdp(ring, i, addr);
480                 if (ret)
481                         return ret;
482         }
483
484         return 0;
485 }
486
487 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
488                                    uint64_t start,
489                                    uint64_t length,
490                                    bool use_scratch)
491 {
492         struct i915_hw_ppgtt *ppgtt =
493                 container_of(vm, struct i915_hw_ppgtt, base);
494         gen8_pte_t *pt_vaddr, scratch_pte;
495         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
496         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
497         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
498         unsigned num_entries = length >> PAGE_SHIFT;
499         unsigned last_pte, i;
500
501         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
502                                       I915_CACHE_LLC, use_scratch);
503
504         while (num_entries) {
505                 struct i915_page_directory_entry *pd;
506                 struct i915_page_table_entry *pt;
507                 struct vm_page *page_table;
508
509                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
510                         continue;
511
512                 pd = ppgtt->pdp.page_directory[pdpe];
513
514                 if (WARN_ON(!pd->page_table[pde]))
515                         continue;
516
517                 pt = pd->page_table[pde];
518
519                 if (WARN_ON(!pt->page))
520                         continue;
521
522                 page_table = pt->page;
523
524                 last_pte = pte + num_entries;
525                 if (last_pte > GEN8_PTES)
526                         last_pte = GEN8_PTES;
527
528                 pt_vaddr = kmap_atomic(page_table);
529
530                 for (i = pte; i < last_pte; i++) {
531                         pt_vaddr[i] = scratch_pte;
532                         num_entries--;
533                 }
534
535                 if (!HAS_LLC(ppgtt->base.dev))
536                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
537                 kunmap_atomic(pt_vaddr);
538
539                 pte = 0;
540                 if (++pde == I915_PDES) {
541                         pdpe++;
542                         pde = 0;
543                 }
544         }
545 }
546
547 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
548                                       vm_page_t *pages,
549                                       uint64_t start,
550                                       unsigned int num_entries,
551                                       enum i915_cache_level cache_level, u32 unused)
552 {
553         struct i915_hw_ppgtt *ppgtt =
554                 container_of(vm, struct i915_hw_ppgtt, base);
555         gen8_pte_t *pt_vaddr;
556         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
557         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
558         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
559         int i;
560
561         pt_vaddr = NULL;
562
563         for (i=0;i<num_entries;i++) {
564                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
565                         break;
566
567                 if (pt_vaddr == NULL) {
568                         struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[pdpe];
569                         struct i915_page_table_entry *pt = pd->page_table[pde];
570                         struct vm_page *page_table = pt->page;
571
572                         pt_vaddr = kmap_atomic(page_table);
573                 }
574
575                 pt_vaddr[pte] =
576                         gen8_pte_encode(VM_PAGE_TO_PHYS(pages[i]),
577                                         cache_level, true);
578                 if (++pte == GEN8_PTES) {
579                         if (!HAS_LLC(ppgtt->base.dev))
580                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
581                         kunmap_atomic(pt_vaddr);
582                         pt_vaddr = NULL;
583                         if (++pde == I915_PDES) {
584                                 pdpe++;
585                                 pde = 0;
586                         }
587                         pte = 0;
588                 }
589         }
590         if (pt_vaddr) {
591                 if (!HAS_LLC(ppgtt->base.dev))
592                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
593                 kunmap_atomic(pt_vaddr);
594         }
595 }
596
597 static void gen8_free_page_tables(struct i915_page_directory_entry *pd, struct drm_device *dev)
598 {
599         int i;
600
601         if (!pd->page)
602                 return;
603
604         for (i = 0; i < I915_PDES; i++) {
605                 if (WARN_ON(!pd->page_table[i]))
606                         continue;
607
608                 unmap_and_free_pt(pd->page_table[i], dev);
609                 pd->page_table[i] = NULL;
610         }
611 }
612
613 static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
614 {
615         int i;
616
617         for (i = 0; i < ppgtt->num_pd_pages; i++) {
618                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
619                         continue;
620
621                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
622                 unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
623         }
624 }
625
626 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
627 {
628         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
629         int i, j;
630
631         for (i = 0; i < ppgtt->num_pd_pages; i++) {
632                 /* TODO: In the future we'll support sparse mappings, so this
633                  * will have to change. */
634                 if (!ppgtt->pdp.page_directory[i]->daddr)
635                         continue;
636
637                 pci_unmap_page(hwdev, ppgtt->pdp.page_directory[i]->daddr, PAGE_SIZE,
638                                PCI_DMA_BIDIRECTIONAL);
639
640                 for (j = 0; j < I915_PDES; j++) {
641                         struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
642                         struct i915_page_table_entry *pt;
643                         dma_addr_t addr;
644
645                         if (WARN_ON(!pd->page_table[j]))
646                                 continue;
647
648                         pt = pd->page_table[j];
649                         addr = pt->daddr;
650
651                         if (addr)
652                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
653                                                PCI_DMA_BIDIRECTIONAL);
654                 }
655         }
656 }
657
658 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
659 {
660         struct i915_hw_ppgtt *ppgtt =
661                 container_of(vm, struct i915_hw_ppgtt, base);
662
663         gen8_ppgtt_unmap_pages(ppgtt);
664         gen8_ppgtt_free(ppgtt);
665 }
666
667 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
668 {
669         int i, ret;
670
671         for (i = 0; i < ppgtt->num_pd_pages; i++) {
672                 ret = alloc_pt_range(ppgtt->pdp.page_directory[i],
673                                      0, I915_PDES, ppgtt->base.dev);
674                 if (ret)
675                         goto unwind_out;
676         }
677
678         return 0;
679
680 unwind_out:
681         while (i--)
682                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
683
684         return -ENOMEM;
685 }
686
687 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
688                                                 const int max_pdp)
689 {
690         int i;
691
692         for (i = 0; i < max_pdp; i++) {
693                 ppgtt->pdp.page_directory[i] = alloc_pd_single();
694                 if (IS_ERR(ppgtt->pdp.page_directory[i]))
695                         goto unwind_out;
696         }
697
698         ppgtt->num_pd_pages = max_pdp;
699         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPES);
700
701         return 0;
702
703 unwind_out:
704         while (i--)
705                 unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
706
707         return -ENOMEM;
708 }
709
710 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
711                             const int max_pdp)
712 {
713         int ret;
714
715         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
716         if (ret)
717                 return ret;
718
719         ret = gen8_ppgtt_allocate_page_tables(ppgtt);
720         if (ret)
721                 goto err_out;
722
723         ppgtt->num_pd_entries = max_pdp * I915_PDES;
724
725         return 0;
726
727 err_out:
728         gen8_ppgtt_free(ppgtt);
729         return ret;
730 }
731
732 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
733                                              const int pd)
734 {
735         dma_addr_t pd_addr;
736         int ret;
737
738         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
739                                ppgtt->pdp.page_directory[pd]->page, 0,
740                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
741
742         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
743         if (ret)
744                 return ret;
745
746         ppgtt->pdp.page_directory[pd]->daddr = pd_addr;
747
748         return 0;
749 }
750
751 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
752                                         const int pd,
753                                         const int pt)
754 {
755         dma_addr_t pt_addr;
756         struct i915_page_directory_entry *pdir = ppgtt->pdp.page_directory[pd];
757         struct i915_page_table_entry *ptab = pdir->page_table[pt];
758         struct vm_page *p = ptab->page;
759         int ret;
760
761         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
762                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
763         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
764         if (ret)
765                 return ret;
766
767         ptab->daddr = pt_addr;
768
769         return 0;
770 }
771
772 /*
773  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
774  * with a net effect resembling a 2-level page table in normal x86 terms. Each
775  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
776  * space.
777  *
778  * FIXME: split allocation into smaller pieces. For now we only ever do this
779  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
780  * TODO: Do something with the size parameter
781  */
782 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
783 {
784         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
785         const int min_pt_pages = I915_PDES * max_pdp;
786         int i, j, ret;
787
788         if (size % (1<<30))
789                 DRM_INFO("Pages will be wasted unless GTT size (%lu) is divisible by 1GB\n", size);
790
791         /* 1. Do all our allocations for page directories and page tables.
792          * We allocate more than was asked so that we can point the unused parts
793          * to valid entries that point to scratch page. Dynamic page tables
794          * will fix this eventually.
795          */
796         ret = gen8_ppgtt_alloc(ppgtt, GEN8_LEGACY_PDPES);
797         if (ret)
798                 return ret;
799
800         /*
801          * 2. Create DMA mappings for the page directories and page tables.
802          */
803         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
804                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
805                 if (ret)
806                         goto bail;
807
808                 for (j = 0; j < I915_PDES; j++) {
809                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
810                         if (ret)
811                                 goto bail;
812                 }
813         }
814
815         /*
816          * 3. Map all the page directory entires to point to the page tables
817          * we've allocated.
818          *
819          * For now, the PPGTT helper functions all require that the PDEs are
820          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
821          * will never need to touch the PDEs again.
822          */
823         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
824                 struct i915_page_directory_entry *pd = ppgtt->pdp.page_directory[i];
825                 gen8_pde_t *pd_vaddr;
826                 pd_vaddr = kmap_atomic(ppgtt->pdp.page_directory[i]->page);
827                 for (j = 0; j < I915_PDES; j++) {
828                         struct i915_page_table_entry *pt = pd->page_table[j];
829                         dma_addr_t addr = pt->daddr;
830                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
831                                                       I915_CACHE_LLC);
832                 }
833                 if (!HAS_LLC(ppgtt->base.dev))
834                         drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
835                 kunmap_atomic(pd_vaddr);
836         }
837
838         ppgtt->switch_mm = gen8_mm_switch;
839         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
840         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
841         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
842         ppgtt->base.start = 0;
843
844         /* This is the area that we advertise as usable for the caller */
845         ppgtt->base.total = max_pdp * I915_PDES * GEN8_PTES * PAGE_SIZE;
846
847         /* Set all ptes to a valid scratch page. Also above requested space */
848         ppgtt->base.clear_range(&ppgtt->base, 0,
849                                 ppgtt->num_pd_pages * GEN8_PTES * PAGE_SIZE,
850                                 true);
851
852         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
853                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
854         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%ld wasted)\n",
855                          ppgtt->num_pd_entries,
856                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
857         return 0;
858
859 bail:
860         gen8_ppgtt_unmap_pages(ppgtt);
861         gen8_ppgtt_free(ppgtt);
862         return ret;
863 }
864
865 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
866 {
867         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
868         struct i915_address_space *vm = &ppgtt->base;
869         gen6_pte_t __iomem *pd_addr;
870         gen6_pte_t scratch_pte;
871         uint32_t pd_entry;
872         int pte, pde;
873
874         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
875
876         pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
877                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
878
879         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
880                    ppgtt->pd.pd_offset,
881                    ppgtt->pd.pd_offset + ppgtt->num_pd_entries);
882         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
883                 u32 expected;
884                 gen6_pte_t *pt_vaddr;
885                 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
886                 pd_entry = readl(pd_addr + pde);
887                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
888
889                 if (pd_entry != expected)
890                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
891                                    pde,
892                                    pd_entry,
893                                    expected);
894                 seq_printf(m, "\tPDE: %x\n", pd_entry);
895
896                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
897                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
898                         unsigned long va =
899                                 (pde * PAGE_SIZE * GEN6_PTES) +
900                                 (pte * PAGE_SIZE);
901                         int i;
902                         bool found = false;
903                         for (i = 0; i < 4; i++)
904                                 if (pt_vaddr[pte + i] != scratch_pte)
905                                         found = true;
906                         if (!found)
907                                 continue;
908
909                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
910                         for (i = 0; i < 4; i++) {
911                                 if (pt_vaddr[pte + i] != scratch_pte)
912                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
913                                 else
914                                         seq_puts(m, "  SCRATCH ");
915                         }
916                         seq_puts(m, "\n");
917                 }
918                 kunmap_atomic(pt_vaddr);
919         }
920 }
921
922 /* Write pde (index) from the page directory @pd to the page table @pt */
923 static void gen6_write_pde(struct i915_page_directory_entry *pd,
924                             const int pde, struct i915_page_table_entry *pt)
925 {
926         /* Caller needs to make sure the write completes if necessary */
927         struct i915_hw_ppgtt *ppgtt =
928                 container_of(pd, struct i915_hw_ppgtt, pd);
929         u32 pd_entry;
930
931         pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
932         pd_entry |= GEN6_PDE_VALID;
933
934         writel(pd_entry, ppgtt->pd_addr + pde);
935 }
936
937 /* Write all the page tables found in the ppgtt structure to incrementing page
938  * directories. */
939 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
940                                   struct i915_page_directory_entry *pd,
941                                   uint32_t start, uint32_t length)
942 {
943         struct i915_page_table_entry *pt;
944         uint32_t pde, temp;
945
946         gen6_for_each_pde(pt, pd, start, length, temp, pde)
947                 gen6_write_pde(pd, pde, pt);
948
949         /* Make sure write is complete before other code can use this page
950          * table. Also require for WC mapped PTEs */
951         readl(dev_priv->gtt.gsm);
952 }
953
954 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
955 {
956         BUG_ON(ppgtt->pd.pd_offset & 0x3f);
957
958         return (ppgtt->pd.pd_offset / 64) << 16;
959 }
960
961 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
962                          struct intel_engine_cs *ring)
963 {
964         int ret;
965
966         /* NB: TLBs must be flushed and invalidated before a switch */
967         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
968         if (ret)
969                 return ret;
970
971         ret = intel_ring_begin(ring, 6);
972         if (ret)
973                 return ret;
974
975         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
976         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
977         intel_ring_emit(ring, PP_DIR_DCLV_2G);
978         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
979         intel_ring_emit(ring, get_pd_offset(ppgtt));
980         intel_ring_emit(ring, MI_NOOP);
981         intel_ring_advance(ring);
982
983         return 0;
984 }
985
986 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
987                           struct intel_engine_cs *ring)
988 {
989         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
990
991         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
992         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
993         return 0;
994 }
995
996 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
997                           struct intel_engine_cs *ring)
998 {
999         int ret;
1000
1001         /* NB: TLBs must be flushed and invalidated before a switch */
1002         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1003         if (ret)
1004                 return ret;
1005
1006         ret = intel_ring_begin(ring, 6);
1007         if (ret)
1008                 return ret;
1009
1010         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1011         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1012         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1013         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1014         intel_ring_emit(ring, get_pd_offset(ppgtt));
1015         intel_ring_emit(ring, MI_NOOP);
1016         intel_ring_advance(ring);
1017
1018         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1019         if (ring->id != RCS) {
1020                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1021                 if (ret)
1022                         return ret;
1023         }
1024
1025         return 0;
1026 }
1027
1028 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1029                           struct intel_engine_cs *ring)
1030 {
1031         struct drm_device *dev = ppgtt->base.dev;
1032         struct drm_i915_private *dev_priv = dev->dev_private;
1033
1034
1035         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1036         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1037
1038         POSTING_READ(RING_PP_DIR_DCLV(ring));
1039
1040         return 0;
1041 }
1042
1043 static void gen8_ppgtt_enable(struct drm_device *dev)
1044 {
1045         struct drm_i915_private *dev_priv = dev->dev_private;
1046         struct intel_engine_cs *ring;
1047         int j;
1048
1049         for_each_ring(ring, dev_priv, j) {
1050                 I915_WRITE(RING_MODE_GEN7(ring),
1051                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1052         }
1053 }
1054
1055 static void gen7_ppgtt_enable(struct drm_device *dev)
1056 {
1057         struct drm_i915_private *dev_priv = dev->dev_private;
1058         struct intel_engine_cs *ring;
1059         uint32_t ecochk, ecobits;
1060         int i;
1061
1062         ecobits = I915_READ(GAC_ECO_BITS);
1063         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1064
1065         ecochk = I915_READ(GAM_ECOCHK);
1066         if (IS_HASWELL(dev)) {
1067                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1068         } else {
1069                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1070                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1071         }
1072         I915_WRITE(GAM_ECOCHK, ecochk);
1073
1074         for_each_ring(ring, dev_priv, i) {
1075                 /* GFX_MODE is per-ring on gen7+ */
1076                 I915_WRITE(RING_MODE_GEN7(ring),
1077                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1078         }
1079 }
1080
1081 static void gen6_ppgtt_enable(struct drm_device *dev)
1082 {
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         uint32_t ecochk, gab_ctl, ecobits;
1085
1086         ecobits = I915_READ(GAC_ECO_BITS);
1087         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1088                    ECOBITS_PPGTT_CACHE64B);
1089
1090         gab_ctl = I915_READ(GAB_CTL);
1091         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1092
1093         ecochk = I915_READ(GAM_ECOCHK);
1094         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1095
1096         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1097 }
1098
1099 /* PPGTT support for Sandybdrige/Gen6 and later */
1100 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1101                                    uint64_t start,
1102                                    uint64_t length,
1103                                    bool use_scratch)
1104 {
1105         struct i915_hw_ppgtt *ppgtt =
1106                 container_of(vm, struct i915_hw_ppgtt, base);
1107         gen6_pte_t *pt_vaddr, scratch_pte;
1108         unsigned first_entry = start >> PAGE_SHIFT;
1109         unsigned num_entries = length >> PAGE_SHIFT;
1110         unsigned act_pt = first_entry / GEN6_PTES;
1111         unsigned first_pte = first_entry % GEN6_PTES;
1112         unsigned last_pte, i;
1113
1114         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1115
1116         while (num_entries) {
1117                 last_pte = first_pte + num_entries;
1118                 if (last_pte > GEN6_PTES)
1119                         last_pte = GEN6_PTES;
1120
1121                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1122
1123                 for (i = first_pte; i < last_pte; i++)
1124                         pt_vaddr[i] = scratch_pte;
1125
1126                 kunmap_atomic(pt_vaddr);
1127
1128                 num_entries -= last_pte - first_pte;
1129                 first_pte = 0;
1130                 act_pt++;
1131         }
1132 }
1133
1134 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1135                                       vm_page_t *pages,
1136                                       uint64_t start,
1137                                       unsigned num_entries,
1138                                       enum i915_cache_level cache_level, u32 flags)
1139 {
1140         struct i915_hw_ppgtt *ppgtt =
1141                 container_of(vm, struct i915_hw_ppgtt, base);
1142         gen6_pte_t *pt_vaddr;
1143         unsigned first_entry = start >> PAGE_SHIFT;
1144         unsigned act_pt = first_entry / GEN6_PTES;
1145         unsigned act_pte = first_entry % GEN6_PTES;
1146
1147         pt_vaddr = NULL;
1148         for (int i=0;i<num_entries;i++) {
1149                 if (pt_vaddr == NULL)
1150                         pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1151
1152                 pt_vaddr[act_pte] =
1153                         vm->pte_encode(VM_PAGE_TO_PHYS(pages[i]),
1154                                        cache_level, true, flags);
1155
1156                 if (++act_pte == GEN6_PTES) {
1157                         kunmap_atomic(pt_vaddr);
1158                         pt_vaddr = NULL;
1159                         act_pt++;
1160                         act_pte = 0;
1161                 }
1162         }
1163         if (pt_vaddr)
1164                 kunmap_atomic(pt_vaddr);
1165 }
1166
1167 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1168  * are switching between contexts with the same LRCA, we also must do a force
1169  * restore.
1170  */
1171 static inline void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1172 {
1173         /* If current vm != vm, */
1174         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1175 }
1176
1177 static void gen6_initialize_pt(struct i915_address_space *vm,
1178                 struct i915_page_table_entry *pt)
1179 {
1180         gen6_pte_t *pt_vaddr, scratch_pte;
1181         int i;
1182
1183         WARN_ON(vm->scratch.addr == 0);
1184
1185         scratch_pte = vm->pte_encode(vm->scratch.addr,
1186                         I915_CACHE_LLC, true, 0);
1187
1188         pt_vaddr = kmap_atomic(pt->page);
1189
1190         for (i = 0; i < GEN6_PTES; i++)
1191                 pt_vaddr[i] = scratch_pte;
1192
1193         kunmap_atomic(pt_vaddr);
1194 }
1195
1196 static int gen6_alloc_va_range(struct i915_address_space *vm,
1197                                uint64_t start, uint64_t length)
1198 {
1199         DECLARE_BITMAP(new_page_tables, I915_PDES);
1200         struct drm_device *dev = vm->dev;
1201         struct drm_i915_private *dev_priv = dev->dev_private;
1202         struct i915_hw_ppgtt *ppgtt =
1203                                 container_of(vm, struct i915_hw_ppgtt, base);
1204         struct i915_page_table_entry *pt;
1205         const uint32_t start_save = start, length_save = length;
1206         uint32_t pde, temp;
1207         int ret;
1208
1209         WARN_ON(upper_32_bits(start));
1210
1211         bitmap_zero(new_page_tables, I915_PDES);
1212
1213         /* The allocation is done in two stages so that we can bail out with
1214          * minimal amount of pain. The first stage finds new page tables that
1215          * need allocation. The second stage marks use ptes within the page
1216          * tables.
1217          */
1218         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1219                 if (pt != ppgtt->scratch_pt) {
1220                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1221                         continue;
1222                 }
1223
1224                 /* We've already allocated a page table */
1225                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1226
1227                 pt = alloc_pt_single(dev);
1228                 if (IS_ERR(pt)) {
1229                         ret = PTR_ERR(pt);
1230                         goto unwind_out;
1231                 }
1232
1233                 gen6_initialize_pt(vm, pt);
1234
1235                 ppgtt->pd.page_table[pde] = pt;
1236                 set_bit(pde, new_page_tables);
1237                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1238         }
1239
1240         start = start_save;
1241         length = length_save;
1242
1243         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1244                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1245
1246                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1247                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1248                            gen6_pte_count(start, length));
1249
1250                 if (test_and_clear_bit(pde, new_page_tables))
1251                         gen6_write_pde(&ppgtt->pd, pde, pt);
1252
1253                 trace_i915_page_table_entry_map(vm, pde, pt,
1254                                          gen6_pte_index(start),
1255                                          gen6_pte_count(start, length),
1256                                          GEN6_PTES);
1257                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1258                                 GEN6_PTES);
1259         }
1260
1261         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1262
1263         /* Make sure write is complete before other code can use this page
1264          * table. Also require for WC mapped PTEs */
1265         readl(dev_priv->gtt.gsm);
1266
1267         mark_tlbs_dirty(ppgtt);
1268         return 0;
1269
1270 unwind_out:
1271         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1272                 struct i915_page_table_entry *pt = ppgtt->pd.page_table[pde];
1273
1274                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1275                 unmap_and_free_pt(pt, vm->dev);
1276         }
1277
1278         mark_tlbs_dirty(ppgtt);
1279         return ret;
1280 }
1281
1282 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1283 {
1284         int i;
1285
1286         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1287                 struct i915_page_table_entry *pt = ppgtt->pd.page_table[i];
1288
1289                 if (pt != ppgtt->scratch_pt)
1290                         unmap_and_free_pt(ppgtt->pd.page_table[i], ppgtt->base.dev);
1291         }
1292
1293         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1294         unmap_and_free_pd(&ppgtt->pd);
1295 }
1296
1297 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1298 {
1299         struct i915_hw_ppgtt *ppgtt =
1300                 container_of(vm, struct i915_hw_ppgtt, base);
1301
1302         drm_mm_remove_node(&ppgtt->node);
1303
1304         gen6_ppgtt_free(ppgtt);
1305 }
1306
1307 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1308 {
1309         struct drm_device *dev = ppgtt->base.dev;
1310         struct drm_i915_private *dev_priv = dev->dev_private;
1311         bool retried = false;
1312         int ret;
1313
1314         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1315          * allocator works in address space sizes, so it's multiplied by page
1316          * size. We allocate at the top of the GTT to avoid fragmentation.
1317          */
1318         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1319         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1320         if (IS_ERR(ppgtt->scratch_pt))
1321                 return PTR_ERR(ppgtt->scratch_pt);
1322
1323         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1324
1325 alloc:
1326         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1327                                                   &ppgtt->node, GEN6_PD_SIZE,
1328                                                   GEN6_PD_ALIGN, 0,
1329                                                   0, dev_priv->gtt.base.total,
1330                                                   DRM_MM_TOPDOWN);
1331         if (ret == -ENOSPC && !retried) {
1332                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1333                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1334                                                I915_CACHE_NONE,
1335                                                0, dev_priv->gtt.base.total,
1336                                                0);
1337                 if (ret)
1338                         goto err_out;
1339
1340                 retried = true;
1341                 goto alloc;
1342         }
1343
1344         if (ret)
1345                 goto err_out;
1346
1347
1348         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1349                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1350
1351         ppgtt->num_pd_entries = I915_PDES;
1352         return 0;
1353
1354 err_out:
1355         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1356         return ret;
1357 }
1358
1359 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1360 {
1361         return gen6_ppgtt_allocate_page_directories(ppgtt);
1362 }
1363
1364 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1365                                   uint64_t start, uint64_t length)
1366 {
1367         struct i915_page_table_entry *unused;
1368         uint32_t pde, temp;
1369
1370         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1371                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1372 }
1373
1374 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1375 {
1376         struct drm_device *dev = ppgtt->base.dev;
1377         struct drm_i915_private *dev_priv = dev->dev_private;
1378         int ret;
1379
1380         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1381         if (IS_GEN6(dev)) {
1382                 ppgtt->switch_mm = gen6_mm_switch;
1383         } else if (IS_HASWELL(dev)) {
1384                 ppgtt->switch_mm = hsw_mm_switch;
1385         } else if (IS_GEN7(dev)) {
1386                 ppgtt->switch_mm = gen7_mm_switch;
1387         } else
1388                 BUG();
1389
1390         if (intel_vgpu_active(dev))
1391                 ppgtt->switch_mm = vgpu_mm_switch;
1392
1393         ret = gen6_ppgtt_alloc(ppgtt);
1394         if (ret)
1395                 return ret;
1396
1397         if (aliasing) {
1398                 /* preallocate all pts */
1399                 ret = alloc_pt_range(&ppgtt->pd, 0, ppgtt->num_pd_entries,
1400                                 ppgtt->base.dev);
1401
1402                 if (ret) {
1403                         gen6_ppgtt_cleanup(&ppgtt->base);
1404                         return ret;
1405                 }
1406         }
1407
1408         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1409         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1410         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1411         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1412         ppgtt->base.start = 0;
1413         ppgtt->base.total = ppgtt->num_pd_entries * GEN6_PTES * PAGE_SIZE;
1414         ppgtt->debug_dump = gen6_dump_ppgtt;
1415
1416         ppgtt->pd.pd_offset =
1417                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1418
1419         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1420                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1421
1422         if (aliasing)
1423                 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1424         else
1425                 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1426
1427         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1428
1429         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1430                          ppgtt->node.size >> 20,
1431                          ppgtt->node.start / PAGE_SIZE);
1432
1433         DRM_DEBUG("Adding PPGTT at offset %x\n",
1434                   ppgtt->pd.pd_offset << 10);
1435
1436         return 0;
1437 }
1438
1439 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1440                 bool aliasing)
1441 {
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443
1444         ppgtt->base.dev = dev;
1445         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1446
1447         if (INTEL_INFO(dev)->gen < 8)
1448                 return gen6_ppgtt_init(ppgtt, aliasing);
1449         else
1450                 return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1451 }
1452 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1453 {
1454         struct drm_i915_private *dev_priv = dev->dev_private;
1455         int ret = 0;
1456
1457         ret = __hw_ppgtt_init(dev, ppgtt, false);
1458         if (ret == 0) {
1459                 kref_init(&ppgtt->ref);
1460                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1461                             ppgtt->base.total);
1462                 i915_init_vm(dev_priv, &ppgtt->base);
1463         }
1464
1465         return ret;
1466 }
1467
1468 int i915_ppgtt_init_hw(struct drm_device *dev)
1469 {
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         struct intel_engine_cs *ring;
1472         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1473         int i, ret = 0;
1474
1475         /* In the case of execlists, PPGTT is enabled by the context descriptor
1476          * and the PDPs are contained within the context itself.  We don't
1477          * need to do anything here. */
1478         if (i915.enable_execlists)
1479                 return 0;
1480
1481         if (!USES_PPGTT(dev))
1482                 return 0;
1483
1484         if (IS_GEN6(dev))
1485                 gen6_ppgtt_enable(dev);
1486         else if (IS_GEN7(dev))
1487                 gen7_ppgtt_enable(dev);
1488         else if (INTEL_INFO(dev)->gen >= 8)
1489                 gen8_ppgtt_enable(dev);
1490         else
1491                 MISSING_CASE(INTEL_INFO(dev)->gen);
1492
1493         if (ppgtt) {
1494                 for_each_ring(ring, dev_priv, i) {
1495                         ret = ppgtt->switch_mm(ppgtt, ring);
1496                         if (ret != 0)
1497                                 return ret;
1498                 }
1499         }
1500
1501         return ret;
1502 }
1503 struct i915_hw_ppgtt *
1504 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1505 {
1506         struct i915_hw_ppgtt *ppgtt;
1507         int ret;
1508
1509         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1510         if (!ppgtt)
1511                 return ERR_PTR(-ENOMEM);
1512
1513         ret = i915_ppgtt_init(dev, ppgtt);
1514         if (ret) {
1515                 kfree(ppgtt);
1516                 return ERR_PTR(ret);
1517         }
1518
1519         ppgtt->file_priv = fpriv;
1520
1521         trace_i915_ppgtt_create(&ppgtt->base);
1522
1523         return ppgtt;
1524 }
1525
1526 void  i915_ppgtt_release(struct kref *kref)
1527 {
1528         struct i915_hw_ppgtt *ppgtt =
1529                 container_of(kref, struct i915_hw_ppgtt, ref);
1530
1531         trace_i915_ppgtt_release(&ppgtt->base);
1532
1533         /* vmas should already be unbound */
1534         WARN_ON(!list_empty(&ppgtt->base.active_list));
1535         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1536
1537         list_del(&ppgtt->base.global_link);
1538         drm_mm_takedown(&ppgtt->base.mm);
1539
1540         ppgtt->base.cleanup(&ppgtt->base);
1541         kfree(ppgtt);
1542 }
1543
1544 static void
1545 ppgtt_bind_vma(struct i915_vma *vma,
1546                enum i915_cache_level cache_level,
1547                u32 flags)
1548 {
1549         const unsigned int num_entries = vma->obj->base.size >> PAGE_SHIFT;
1550
1551         /* Currently applicable only to VLV */
1552         if (vma->obj->gt_ro)
1553                 flags |= PTE_READ_ONLY;
1554
1555         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1556                                 num_entries,
1557                                 cache_level, flags);
1558 }
1559
1560 static void ppgtt_unbind_vma(struct i915_vma *vma)
1561 {
1562         vma->vm->clear_range(vma->vm,
1563                              vma->node.start,
1564                              vma->obj->base.size,
1565                              true);
1566 }
1567
1568 extern int intel_iommu_gfx_mapped;
1569 /* Certain Gen5 chipsets require require idling the GPU before
1570  * unmapping anything from the GTT when VT-d is enabled.
1571  */
1572 static inline bool needs_idle_maps(struct drm_device *dev)
1573 {
1574 #ifdef CONFIG_INTEL_IOMMU
1575         /* Query intel_iommu to see if we need the workaround. Presumably that
1576          * was loaded first.
1577          */
1578         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1579                 return true;
1580 #endif
1581         return false;
1582 }
1583
1584 static bool do_idling(struct drm_i915_private *dev_priv)
1585 {
1586         bool ret = dev_priv->mm.interruptible;
1587
1588         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1589                 dev_priv->mm.interruptible = false;
1590                 if (i915_gpu_idle(dev_priv->dev)) {
1591                         DRM_ERROR("Couldn't idle GPU\n");
1592                         /* Wait a bit, in hopes it avoids the hang */
1593                         udelay(10);
1594                 }
1595         }
1596
1597         return ret;
1598 }
1599
1600 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1601 {
1602         if (unlikely(dev_priv->gtt.do_idle_maps))
1603                 dev_priv->mm.interruptible = interruptible;
1604 }
1605
1606 void i915_check_and_clear_faults(struct drm_device *dev)
1607 {
1608         struct drm_i915_private *dev_priv = dev->dev_private;
1609         struct intel_engine_cs *ring;
1610         int i;
1611
1612         if (INTEL_INFO(dev)->gen < 6)
1613                 return;
1614
1615         for_each_ring(ring, dev_priv, i) {
1616                 u32 fault_reg;
1617                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1618                 if (fault_reg & RING_FAULT_VALID) {
1619 #if 0
1620                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1621                                          "\tAddr: 0x%08lx\n"
1622                                          "\tAddress space: %s\n"
1623                                          "\tSource ID: %d\n"
1624                                          "\tType: %d\n",
1625                                          fault_reg & PAGE_MASK,
1626                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1627                                          RING_FAULT_SRCID(fault_reg),
1628                                          RING_FAULT_FAULT_TYPE(fault_reg));
1629 #endif
1630                         I915_WRITE(RING_FAULT_REG(ring),
1631                                    fault_reg & ~RING_FAULT_VALID);
1632                 }
1633         }
1634         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1635 }
1636
1637 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1638 {
1639         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1640                 intel_gtt_chipset_flush();
1641         } else {
1642                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1643                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1644         }
1645 }
1646
1647 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1648 {
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650
1651         /* Don't bother messing with faults pre GEN6 as we have little
1652          * documentation supporting that it's a good idea.
1653          */
1654         if (INTEL_INFO(dev)->gen < 6)
1655                 return;
1656
1657         i915_check_and_clear_faults(dev);
1658
1659         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1660                                        dev_priv->gtt.base.start,
1661                                        dev_priv->gtt.base.total,
1662                                        true);
1663
1664         i915_ggtt_flush(dev_priv);
1665 }
1666
1667 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1668 {
1669         struct drm_i915_private *dev_priv = dev->dev_private;
1670         struct drm_i915_gem_object *obj;
1671         struct i915_address_space *vm;
1672
1673         i915_check_and_clear_faults(dev);
1674
1675         /* First fill our portion of the GTT with scratch pages */
1676         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1677                                        dev_priv->gtt.base.start,
1678                                        dev_priv->gtt.base.total,
1679                                        true);
1680
1681         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1682                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1683                                                            &dev_priv->gtt.base);
1684                 if (!vma)
1685                         continue;
1686
1687                 i915_gem_clflush_object(obj, obj->pin_display);
1688                 /* The bind_vma code tries to be smart about tracking mappings.
1689                  * Unfortunately above, we've just wiped out the mappings
1690                  * without telling our object about it. So we need to fake it.
1691                  *
1692                  * Bind is not expected to fail since this is only called on
1693                  * resume and assumption is all requirements exist already.
1694                  */
1695                 vma->bound &= ~GLOBAL_BIND;
1696                 WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1697         }
1698
1699
1700         if (INTEL_INFO(dev)->gen >= 8) {
1701                 if (IS_CHERRYVIEW(dev))
1702                         chv_setup_private_ppat(dev_priv);
1703                 else
1704                         bdw_setup_private_ppat(dev_priv);
1705
1706                 return;
1707         }
1708
1709         if (USES_PPGTT(dev)) {
1710                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1711                         /* TODO: Perhaps it shouldn't be gen6 specific */
1712
1713                         struct i915_hw_ppgtt *ppgtt =
1714                                         container_of(vm, struct i915_hw_ppgtt,
1715                                                      base);
1716
1717                         if (i915_is_ggtt(vm))
1718                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1719
1720                         gen6_write_page_range(dev_priv, &ppgtt->pd,
1721                                               0, ppgtt->base.total);
1722                 }
1723         }
1724
1725         i915_ggtt_flush(dev_priv);
1726 }
1727
1728 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1729 {
1730         if (obj->has_dma_mapping)
1731                 return 0;
1732
1733 #if 0
1734         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1735                         obj->pages->sgl, obj->pages->nents,
1736                         PCI_DMA_BIDIRECTIONAL))
1737                 return -ENOSPC;
1738 #endif
1739
1740         return 0;
1741 }
1742
1743 static inline void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1744 {
1745 #if 0
1746         writeq(pte, addr);
1747 #else
1748         iowrite32((u32)pte, addr);
1749         iowrite32(pte >> 32, addr + 4);
1750 #endif
1751 }
1752
1753 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1754                                      vm_page_t *pages,
1755                                      uint64_t start,
1756                                      unsigned int num_entries,
1757                                      enum i915_cache_level level, u32 unused)
1758 {
1759         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1760         unsigned first_entry = start >> PAGE_SHIFT;
1761         gen8_pte_t __iomem *gtt_entries =
1762                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1763         int i = 0;
1764         dma_addr_t addr = 0;
1765
1766         for (i=0;i<num_entries;i++) {
1767                 addr = VM_PAGE_TO_PHYS(pages[i]);
1768                 gen8_set_pte(&gtt_entries[i],
1769                              gen8_pte_encode(addr, level, true));
1770         }
1771
1772         /*
1773          * XXX: This serves as a posting read to make sure that the PTE has
1774          * actually been updated. There is some concern that even though
1775          * registers and PTEs are within the same BAR that they are potentially
1776          * of NUMA access patterns. Therefore, even with the way we assume
1777          * hardware should work, we must keep this posting read for paranoia.
1778          */
1779         if (i != 0)
1780                 WARN_ON(readq(&gtt_entries[i-1])
1781                         != gen8_pte_encode(addr, level, true));
1782
1783         /* This next bit makes the above posting read even more important. We
1784          * want to flush the TLBs only after we're certain all the PTE updates
1785          * have finished.
1786          */
1787         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1788         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1789 }
1790
1791 /*
1792  * Binds an object into the global gtt with the specified cache level. The object
1793  * will be accessible to the GPU via commands whose operands reference offsets
1794  * within the global GTT as well as accessible by the GPU through the GMADR
1795  * mapped BAR (dev_priv->mm.gtt->gtt).
1796  */
1797 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1798                                      vm_page_t *pages,
1799                                      uint64_t start,
1800                                      unsigned int num_entries,
1801                                      enum i915_cache_level level, u32 flags)
1802 {
1803         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1804         unsigned first_entry = start >> PAGE_SHIFT;
1805         gen6_pte_t __iomem *gtt_entries =
1806                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1807         int i = 0;
1808         dma_addr_t addr = 0; /* shut up gcc */
1809
1810         for (i = 0; i < num_entries; i++) {
1811                 addr = VM_PAGE_TO_PHYS(pages[i]);
1812                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1813         }
1814
1815         /* XXX: This serves as a posting read to make sure that the PTE has
1816          * actually been updated. There is some concern that even though
1817          * registers and PTEs are within the same BAR that they are potentially
1818          * of NUMA access patterns. Therefore, even with the way we assume
1819          * hardware should work, we must keep this posting read for paranoia.
1820          */
1821         if (i != 0) {
1822                 unsigned long gtt = readl(&gtt_entries[i-1]);
1823                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1824         }
1825
1826         /* This next bit makes the above posting read even more important. We
1827          * want to flush the TLBs only after we're certain all the PTE updates
1828          * have finished.
1829          */
1830         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1831         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1832 }
1833
1834 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1835                                   uint64_t start,
1836                                   uint64_t length,
1837                                   bool use_scratch)
1838 {
1839         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1840         unsigned first_entry = start >> PAGE_SHIFT;
1841         unsigned num_entries = length >> PAGE_SHIFT;
1842         gen8_pte_t scratch_pte, __iomem *gtt_base =
1843                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1844         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1845         int i;
1846
1847         if (WARN(num_entries > max_entries,
1848                  "First entry = %d; Num entries = %d (max=%d)\n",
1849                  first_entry, num_entries, max_entries))
1850                 num_entries = max_entries;
1851
1852         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1853                                       I915_CACHE_LLC,
1854                                       use_scratch);
1855         for (i = 0; i < num_entries; i++)
1856                 gen8_set_pte(&gtt_base[i], scratch_pte);
1857         readl(gtt_base);
1858 }
1859
1860 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1861                                   uint64_t start,
1862                                   uint64_t length,
1863                                   bool use_scratch)
1864 {
1865         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1866         unsigned first_entry = start >> PAGE_SHIFT;
1867         unsigned num_entries = length >> PAGE_SHIFT;
1868         gen6_pte_t scratch_pte, __iomem *gtt_base =
1869                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1870         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1871         int i;
1872
1873         if (WARN(num_entries > max_entries,
1874                  "First entry = %d; Num entries = %d (max=%d)\n",
1875                  first_entry, num_entries, max_entries))
1876                 num_entries = max_entries;
1877
1878         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1879
1880         for (i = 0; i < num_entries; i++)
1881                 iowrite32(scratch_pte, &gtt_base[i]);
1882         readl(gtt_base);
1883 }
1884
1885 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1886                                enum i915_cache_level cache_level,
1887                                u32 unused)
1888 {
1889         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1890         const unsigned int num_entries = vma->obj->base.size >> PAGE_SHIFT;
1891         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1892                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1893
1894         BUG_ON(!i915_is_ggtt(vma->vm));
1895         intel_gtt_insert_pages(entry, num_entries, vma->ggtt_view.pages, flags);
1896         vma->bound = GLOBAL_BIND;
1897 }
1898
1899 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1900                                   uint64_t start,
1901                                   uint64_t length,
1902                                   bool unused)
1903 {
1904         unsigned first_entry = start >> PAGE_SHIFT;
1905         unsigned num_entries = length >> PAGE_SHIFT;
1906         intel_gtt_clear_range(first_entry, num_entries);
1907 }
1908
1909 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1910 {
1911         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1912         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1913
1914         BUG_ON(!i915_is_ggtt(vma->vm));
1915         vma->bound = 0;
1916         intel_gtt_clear_range(first, size);
1917 }
1918
1919 static void ggtt_bind_vma(struct i915_vma *vma,
1920                           enum i915_cache_level cache_level,
1921                           u32 flags)
1922 {
1923         struct drm_device *dev = vma->vm->dev;
1924         struct drm_i915_private *dev_priv = dev->dev_private;
1925         struct drm_i915_gem_object *obj = vma->obj;
1926         struct vm_page **pages = obj->pages;
1927
1928         /* Currently applicable only to VLV */
1929         if (obj->gt_ro)
1930                 flags |= PTE_READ_ONLY;
1931
1932         if (i915_is_ggtt(vma->vm))
1933                 pages = vma->ggtt_view.pages;
1934
1935         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1936          * or we have a global mapping already but the cacheability flags have
1937          * changed, set the global PTEs.
1938          *
1939          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1940          * instead if none of the above hold true.
1941          *
1942          * NB: A global mapping should only be needed for special regions like
1943          * "gtt mappable", SNB errata, or if specified via special execbuf
1944          * flags. At all other times, the GPU will use the aliasing PPGTT.
1945          */
1946         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1947                 if (!(vma->bound & GLOBAL_BIND) ||
1948                     (cache_level != obj->cache_level)) {
1949                         vma->vm->insert_entries(vma->vm, pages,
1950                                                 vma->node.start,
1951                                                 obj->base.size >> PAGE_SHIFT,
1952                                                 cache_level, flags);
1953                         vma->bound |= GLOBAL_BIND;
1954                 }
1955         }
1956
1957         if (dev_priv->mm.aliasing_ppgtt &&
1958             (!(vma->bound & LOCAL_BIND) ||
1959              (cache_level != obj->cache_level))) {
1960                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1961                 appgtt->base.insert_entries(&appgtt->base, pages,
1962                                             vma->node.start,
1963                                             obj->base.size >> PAGE_SHIFT,
1964                                             cache_level, flags);
1965                 vma->bound |= LOCAL_BIND;
1966         }
1967 }
1968
1969 static void ggtt_unbind_vma(struct i915_vma *vma)
1970 {
1971         struct drm_device *dev = vma->vm->dev;
1972         struct drm_i915_private *dev_priv = dev->dev_private;
1973         struct drm_i915_gem_object *obj = vma->obj;
1974
1975         if (vma->bound & GLOBAL_BIND) {
1976                 vma->vm->clear_range(vma->vm,
1977                                      vma->node.start,
1978                                      obj->base.size,
1979                                      true);
1980                 vma->bound &= ~GLOBAL_BIND;
1981         }
1982
1983         if (vma->bound & LOCAL_BIND) {
1984                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1985                 appgtt->base.clear_range(&appgtt->base,
1986                                          vma->node.start,
1987                                          obj->base.size,
1988                                          true);
1989                 vma->bound &= ~LOCAL_BIND;
1990         }
1991 }
1992
1993 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1994 {
1995         struct drm_device *dev = obj->base.dev;
1996         struct drm_i915_private *dev_priv = dev->dev_private;
1997         bool interruptible;
1998
1999         interruptible = do_idling(dev_priv);
2000
2001 #if 0
2002         if (!obj->has_dma_mapping)
2003                 dma_unmap_sg(&dev->pdev->dev,
2004                              obj->pages->sgl, obj->pages->nents,
2005                              PCI_DMA_BIDIRECTIONAL);
2006 #endif
2007
2008         undo_idling(dev_priv, interruptible);
2009 }
2010
2011 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2012                                   unsigned long color,
2013                                   u64 *start,
2014                                   u64 *end)
2015 {
2016         if (node->color != color)
2017                 *start += 4096;
2018
2019         if (!list_empty(&node->node_list)) {
2020                 node = list_entry(node->node_list.next,
2021                                   struct drm_mm_node,
2022                                   node_list);
2023                 if (node->allocated && node->color != color)
2024                         *end -= 4096;
2025         }
2026 }
2027
2028 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2029                                      unsigned long start,
2030                                      unsigned long mappable_end,
2031                                      unsigned long end)
2032 {
2033         /* Let GEM Manage all of the aperture.
2034          *
2035          * However, leave one page at the end still bound to the scratch page.
2036          * There are a number of places where the hardware apparently prefetches
2037          * past the end of the object, and we've seen multiple hangs with the
2038          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2039          * aperture.  One page should be enough to keep any prefetching inside
2040          * of the aperture.
2041          */
2042         struct drm_i915_private *dev_priv = dev->dev_private;
2043         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2044         unsigned long mappable;
2045         int error;
2046         struct drm_mm_node *entry;
2047         struct drm_i915_gem_object *obj;
2048         unsigned long hole_start, hole_end;
2049         int ret;
2050
2051         kprintf("MAPPABLE_END VS END %016jx %016jx\n", mappable_end, end);
2052         tsleep(&mappable_end, 0, "DELAY", hz); /* for kprintf */
2053         /*BUG_ON(mappable_end > end);*/
2054
2055         mappable = min(end, mappable_end) - start;
2056
2057         /* Subtract the guard page ... */
2058         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2059
2060         dev_priv->gtt.base.start = start;
2061         dev_priv->gtt.base.total = end - start;
2062
2063         if (intel_vgpu_active(dev)) {
2064                 ret = intel_vgt_balloon(dev);
2065                 if (ret)
2066                         return ret;
2067         }
2068
2069         if (!HAS_LLC(dev))
2070                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2071
2072         /* Mark any preallocated objects as occupied */
2073         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2074                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2075
2076                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2077                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2078
2079                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2080                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2081                 if (ret) {
2082                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2083                         return ret;
2084                 }
2085                 vma->bound |= GLOBAL_BIND;
2086         }
2087
2088         /* Clear any non-preallocated blocks */
2089         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2090                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2091                               hole_start, hole_end);
2092                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2093                                      hole_end - hole_start, true);
2094         }
2095
2096 #ifdef __DragonFly__
2097         device_printf(dev->dev,
2098             "taking over the fictitious range 0x%lx-0x%lx\n",
2099             dev_priv->gtt.mappable_base + start, dev_priv->gtt.mappable_base + start + mappable);
2100         error = -vm_phys_fictitious_reg_range(dev_priv->gtt.mappable_base + start,
2101             dev_priv->gtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2102 #endif
2103
2104         /* And finally clear the reserved guard page */
2105         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2106
2107         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2108                 struct i915_hw_ppgtt *ppgtt;
2109
2110                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2111                 if (!ppgtt)
2112                         return -ENOMEM;
2113
2114                 ret = __hw_ppgtt_init(dev, ppgtt, true);
2115                 if (ret) {
2116                         kfree(ppgtt);
2117                         return ret;
2118                 }
2119
2120                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2121         }
2122
2123         return 0;
2124 }
2125
2126 void i915_gem_init_global_gtt(struct drm_device *dev)
2127 {
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129         unsigned long gtt_size, mappable_size;
2130
2131         gtt_size = dev_priv->gtt.base.total;
2132         mappable_size = dev_priv->gtt.mappable_end;
2133
2134         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2135 }
2136
2137 void i915_global_gtt_cleanup(struct drm_device *dev)
2138 {
2139         struct drm_i915_private *dev_priv = dev->dev_private;
2140         struct i915_address_space *vm = &dev_priv->gtt.base;
2141
2142         if (dev_priv->mm.aliasing_ppgtt) {
2143                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2144
2145                 ppgtt->base.cleanup(&ppgtt->base);
2146         }
2147
2148         if (drm_mm_initialized(&vm->mm)) {
2149                 if (intel_vgpu_active(dev))
2150                         intel_vgt_deballoon();
2151
2152                 drm_mm_takedown(&vm->mm);
2153                 list_del(&vm->global_link);
2154         }
2155
2156         vm->cleanup(vm);
2157 }
2158
2159 static int setup_scratch_page(struct drm_device *dev)
2160 {
2161         struct drm_i915_private *dev_priv = dev->dev_private;
2162         struct vm_page *page;
2163         dma_addr_t dma_addr;
2164
2165         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2166         if (page == NULL)
2167                 return -ENOMEM;
2168         set_pages_uc(page, 1);
2169
2170 #ifdef CONFIG_INTEL_IOMMU
2171         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2172                                 PCI_DMA_BIDIRECTIONAL);
2173         if (pci_dma_mapping_error(dev->pdev, dma_addr))
2174                 return -EINVAL;
2175 #else
2176         dma_addr = page_to_phys(page);
2177 #endif
2178         dev_priv->gtt.base.scratch.page = page;
2179         dev_priv->gtt.base.scratch.addr = dma_addr;
2180
2181         return 0;
2182 }
2183
2184 #if 0
2185 static void teardown_scratch_page(struct drm_device *dev)
2186 {
2187         struct drm_i915_private *dev_priv = dev->dev_private;
2188         struct vm_page *page = dev_priv->gtt.base.scratch.page;
2189
2190         set_pages_wb(page, 1);
2191         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2192                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2193         __free_page(page);
2194 }
2195 #endif
2196
2197 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2198 {
2199         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2200         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2201         return snb_gmch_ctl << 20;
2202 }
2203
2204 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2205 {
2206         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2207         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2208         if (bdw_gmch_ctl)
2209                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2210
2211 #ifdef CONFIG_X86_32
2212         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2213         if (bdw_gmch_ctl > 4)
2214                 bdw_gmch_ctl = 4;
2215 #endif
2216
2217         return bdw_gmch_ctl << 20;
2218 }
2219
2220 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2221 {
2222         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2223         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2224
2225         if (gmch_ctrl)
2226                 return 1 << (20 + gmch_ctrl);
2227
2228         return 0;
2229 }
2230
2231 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2232 {
2233         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2234         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2235         return snb_gmch_ctl << 25; /* 32 MB units */
2236 }
2237
2238 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2239 {
2240         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2241         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2242         return bdw_gmch_ctl << 25; /* 32 MB units */
2243 }
2244
2245 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2246 {
2247         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2248         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2249
2250         /*
2251          * 0x0  to 0x10: 32MB increments starting at 0MB
2252          * 0x11 to 0x16: 4MB increments starting at 8MB
2253          * 0x17 to 0x1d: 4MB increments start at 36MB
2254          */
2255         if (gmch_ctrl < 0x11)
2256                 return gmch_ctrl << 25;
2257         else if (gmch_ctrl < 0x17)
2258                 return (gmch_ctrl - 0x11 + 2) << 22;
2259         else
2260                 return (gmch_ctrl - 0x17 + 9) << 22;
2261 }
2262
2263 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2264 {
2265         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2266         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2267
2268         if (gen9_gmch_ctl < 0xf0)
2269                 return gen9_gmch_ctl << 25; /* 32 MB units */
2270         else
2271                 /* 4MB increments starting at 0xf0 for 4MB */
2272                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2273 }
2274
2275 static int ggtt_probe_common(struct drm_device *dev,
2276                              size_t gtt_size)
2277 {
2278         struct drm_i915_private *dev_priv = dev->dev_private;
2279         phys_addr_t gtt_phys_addr;
2280         int ret;
2281
2282         /* For Modern GENs the PTEs and register space are split in the BAR */
2283         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2284                 (pci_resource_len(dev->pdev, 0) / 2);
2285
2286         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2287         if (!dev_priv->gtt.gsm) {
2288                 DRM_ERROR("Failed to map the gtt page table\n");
2289                 return -ENOMEM;
2290         }
2291
2292         ret = setup_scratch_page(dev);
2293         if (ret) {
2294                 DRM_ERROR("Scratch setup failed\n");
2295                 /* iounmap will also get called at remove, but meh */
2296 #if 0
2297                 iounmap(dev_priv->gtt.gsm);
2298 #endif
2299         }
2300
2301         return ret;
2302 }
2303
2304 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2305  * bits. When using advanced contexts each context stores its own PAT, but
2306  * writing this data shouldn't be harmful even in those cases. */
2307 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2308 {
2309         uint64_t pat;
2310
2311         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2312               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2313               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2314               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2315               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2316               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2317               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2318               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2319
2320         if (!USES_PPGTT(dev_priv->dev))
2321                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2322                  * so RTL will always use the value corresponding to
2323                  * pat_sel = 000".
2324                  * So let's disable cache for GGTT to avoid screen corruptions.
2325                  * MOCS still can be used though.
2326                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2327                  * before this patch, i.e. the same uncached + snooping access
2328                  * like on gen6/7 seems to be in effect.
2329                  * - So this just fixes blitter/render access. Again it looks
2330                  * like it's not just uncached access, but uncached + snooping.
2331                  * So we can still hold onto all our assumptions wrt cpu
2332                  * clflushing on LLC machines.
2333                  */
2334                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2335
2336         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2337          * write would work. */
2338         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2339         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2340 }
2341
2342 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2343 {
2344         uint64_t pat;
2345
2346         /*
2347          * Map WB on BDW to snooped on CHV.
2348          *
2349          * Only the snoop bit has meaning for CHV, the rest is
2350          * ignored.
2351          *
2352          * The hardware will never snoop for certain types of accesses:
2353          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2354          * - PPGTT page tables
2355          * - some other special cycles
2356          *
2357          * As with BDW, we also need to consider the following for GT accesses:
2358          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2359          * so RTL will always use the value corresponding to
2360          * pat_sel = 000".
2361          * Which means we must set the snoop bit in PAT entry 0
2362          * in order to keep the global status page working.
2363          */
2364         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2365               GEN8_PPAT(1, 0) |
2366               GEN8_PPAT(2, 0) |
2367               GEN8_PPAT(3, 0) |
2368               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2369               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2370               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2371               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2372
2373         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2374         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2375 }
2376
2377 static int gen8_gmch_probe(struct drm_device *dev,
2378                            size_t *gtt_total,
2379                            size_t *stolen,
2380                            phys_addr_t *mappable_base,
2381                            unsigned long *mappable_end)
2382 {
2383         struct drm_i915_private *dev_priv = dev->dev_private;
2384         unsigned int gtt_size;
2385         u16 snb_gmch_ctl;
2386         int ret;
2387
2388         /* TODO: We're not aware of mappable constraints on gen8 yet */
2389         *mappable_base = pci_resource_start(dev->pdev, 2);
2390         *mappable_end = pci_resource_len(dev->pdev, 2);
2391
2392 #if 0
2393         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2394                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2395 #endif
2396
2397         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2398
2399         if (INTEL_INFO(dev)->gen >= 9) {
2400                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2401                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2402         } else if (IS_CHERRYVIEW(dev)) {
2403                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2404                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2405         } else {
2406                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2407                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2408         }
2409
2410         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2411
2412         if (IS_CHERRYVIEW(dev))
2413                 chv_setup_private_ppat(dev_priv);
2414         else
2415                 bdw_setup_private_ppat(dev_priv);
2416
2417         ret = ggtt_probe_common(dev, gtt_size);
2418
2419         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2420         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2421
2422         return ret;
2423 }
2424
2425 static int gen6_gmch_probe(struct drm_device *dev,
2426                            size_t *gtt_total,
2427                            size_t *stolen,
2428                            phys_addr_t *mappable_base,
2429                            unsigned long *mappable_end)
2430 {
2431         struct drm_i915_private *dev_priv = dev->dev_private;
2432         unsigned int gtt_size;
2433         u16 snb_gmch_ctl;
2434         int ret;
2435
2436         *mappable_base = pci_resource_start(dev->pdev, 2);
2437         *mappable_end = pci_resource_len(dev->pdev, 2);
2438
2439         /* 64/512MB is the current min/max we actually know of, but this is just
2440          * a coarse sanity check.
2441          */
2442         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2443                 DRM_ERROR("Unknown GMADR size (%lx)\n",
2444                           dev_priv->gtt.mappable_end);
2445                 return -ENXIO;
2446         }
2447
2448 #if 0
2449         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2450                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2451 #endif
2452         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2453
2454         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2455
2456         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2457         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2458
2459         ret = ggtt_probe_common(dev, gtt_size);
2460
2461         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2462         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2463
2464         return ret;
2465 }
2466
2467 static void gen6_gmch_remove(struct i915_address_space *vm)
2468 {
2469 #if 0
2470         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2471
2472         iounmap(gtt->gsm);
2473         teardown_scratch_page(vm->dev);
2474 #endif
2475 }
2476
2477 static int i915_gmch_probe(struct drm_device *dev,
2478                            size_t *gtt_total,
2479                            size_t *stolen,
2480                            phys_addr_t *mappable_base,
2481                            unsigned long *mappable_end)
2482 {
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484 #if 0
2485         int ret;
2486
2487         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2488         if (!ret) {
2489                 DRM_ERROR("failed to set up gmch\n");
2490                 return -EIO;
2491         }
2492 #endif
2493
2494         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2495
2496         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2497         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2498
2499         if (unlikely(dev_priv->gtt.do_idle_maps))
2500                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2501
2502         return 0;
2503 }
2504
2505 static void i915_gmch_remove(struct i915_address_space *vm)
2506 {
2507         intel_gmch_remove();
2508 }
2509
2510 int i915_gem_gtt_init(struct drm_device *dev)
2511 {
2512         struct drm_i915_private *dev_priv = dev->dev_private;
2513         struct i915_gtt *gtt = &dev_priv->gtt;
2514         int ret;
2515
2516         if (INTEL_INFO(dev)->gen <= 5) {
2517                 gtt->gtt_probe = i915_gmch_probe;
2518                 gtt->base.cleanup = i915_gmch_remove;
2519         } else if (INTEL_INFO(dev)->gen < 8) {
2520                 gtt->gtt_probe = gen6_gmch_probe;
2521                 gtt->base.cleanup = gen6_gmch_remove;
2522                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2523                         gtt->base.pte_encode = iris_pte_encode;
2524                 else if (IS_HASWELL(dev))
2525                         gtt->base.pte_encode = hsw_pte_encode;
2526                 else if (IS_VALLEYVIEW(dev))
2527                         gtt->base.pte_encode = byt_pte_encode;
2528                 else if (INTEL_INFO(dev)->gen >= 7)
2529                         gtt->base.pte_encode = ivb_pte_encode;
2530                 else
2531                         gtt->base.pte_encode = snb_pte_encode;
2532         } else {
2533                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2534                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2535         }
2536
2537         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2538                              &gtt->mappable_base, &gtt->mappable_end);
2539         if (ret)
2540                 return ret;
2541
2542         gtt->base.dev = dev;
2543
2544         /* GMADR is the PCI mmio aperture into the global GTT. */
2545         DRM_INFO("Memory usable by graphics device = %zdM\n",
2546                  gtt->base.total >> 20);
2547         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2548         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2549 #ifdef CONFIG_INTEL_IOMMU
2550         if (intel_iommu_gfx_mapped)
2551                 DRM_INFO("VT-d active for gfx access\n");
2552 #endif
2553         /*
2554          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2555          * user's requested state against the hardware/driver capabilities.  We
2556          * do this now so that we can print out any log messages once rather
2557          * than every time we check intel_enable_ppgtt().
2558          */
2559         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2560         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2561
2562         return 0;
2563 }
2564
2565 static struct i915_vma *
2566 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2567                       struct i915_address_space *vm,
2568                       const struct i915_ggtt_view *ggtt_view)
2569 {
2570         struct i915_vma *vma;
2571
2572         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2573                 return ERR_PTR(-EINVAL);
2574         vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2575         if (vma == NULL)
2576                 return ERR_PTR(-ENOMEM);
2577
2578         INIT_LIST_HEAD(&vma->vma_link);
2579         INIT_LIST_HEAD(&vma->mm_list);
2580         INIT_LIST_HEAD(&vma->exec_list);
2581         vma->vm = vm;
2582         vma->obj = obj;
2583
2584         if (INTEL_INFO(vm->dev)->gen >= 6) {
2585                 if (i915_is_ggtt(vm)) {
2586                         vma->ggtt_view = *ggtt_view;
2587
2588                         vma->unbind_vma = ggtt_unbind_vma;
2589                         vma->bind_vma = ggtt_bind_vma;
2590                 } else {
2591                         vma->unbind_vma = ppgtt_unbind_vma;
2592                         vma->bind_vma = ppgtt_bind_vma;
2593                 }
2594         } else {
2595                 BUG_ON(!i915_is_ggtt(vm));
2596                 vma->ggtt_view = *ggtt_view;
2597                 vma->unbind_vma = i915_ggtt_unbind_vma;
2598                 vma->bind_vma = i915_ggtt_bind_vma;
2599         }
2600
2601         list_add_tail(&vma->vma_link, &obj->vma_list);
2602         if (!i915_is_ggtt(vm))
2603                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2604
2605         return vma;
2606 }
2607
2608 struct i915_vma *
2609 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2610                                   struct i915_address_space *vm)
2611 {
2612         struct i915_vma *vma;
2613
2614         vma = i915_gem_obj_to_vma(obj, vm);
2615         if (!vma)
2616                 vma = __i915_gem_vma_create(obj, vm,
2617                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2618
2619         return vma;
2620 }
2621
2622 struct i915_vma *
2623 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2624                                        const struct i915_ggtt_view *view)
2625 {
2626         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2627         struct i915_vma *vma;
2628
2629         if (WARN_ON(!view))
2630                 return ERR_PTR(-EINVAL);
2631
2632         vma = i915_gem_obj_to_ggtt_view(obj, view);
2633
2634         if (IS_ERR(vma))
2635                 return vma;
2636
2637         if (!vma)
2638                 vma = __i915_gem_vma_create(obj, ggtt, view);
2639
2640         return vma;
2641
2642 }
2643
2644 #if 0
2645 static void
2646 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2647              struct sg_table *st)
2648 {
2649         unsigned int column, row;
2650         unsigned int src_idx;
2651         struct scatterlist *sg = st->sgl;
2652
2653         st->nents = 0;
2654
2655         for (column = 0; column < width; column++) {
2656                 src_idx = width * (height - 1) + column;
2657                 for (row = 0; row < height; row++) {
2658                         st->nents++;
2659                         /* We don't need the pages, but need to initialize
2660                          * the entries so the sg list can be happily traversed.
2661                          * The only thing we need are DMA addresses.
2662                          */
2663                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2664                         sg_dma_address(sg) = in[src_idx];
2665                         sg_dma_len(sg) = PAGE_SIZE;
2666                         sg = sg_next(sg);
2667                         src_idx -= width;
2668                 }
2669         }
2670 }
2671
2672 static struct sg_table *
2673 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2674                           struct drm_i915_gem_object *obj)
2675 {
2676         struct drm_device *dev = obj->base.dev;
2677         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2678         unsigned long size, pages, rot_pages;
2679         struct sg_page_iter sg_iter;
2680         unsigned long i;
2681         dma_addr_t *page_addr_list;
2682         struct sg_table *st;
2683         unsigned int tile_pitch, tile_height;
2684         unsigned int width_pages, height_pages;
2685         int ret = -ENOMEM;
2686
2687         pages = obj->base.size / PAGE_SIZE;
2688
2689         /* Calculate tiling geometry. */
2690         tile_height = intel_tile_height(dev, rot_info->pixel_format,
2691                                         rot_info->fb_modifier);
2692         tile_pitch = PAGE_SIZE / tile_height;
2693         width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2694         height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2695         rot_pages = width_pages * height_pages;
2696         size = rot_pages * PAGE_SIZE;
2697
2698         /* Allocate a temporary list of source pages for random access. */
2699         page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2700         if (!page_addr_list)
2701                 return ERR_PTR(ret);
2702
2703         /* Allocate target SG list. */
2704         st = kmalloc(sizeof(*st), GFP_KERNEL);
2705         if (!st)
2706                 goto err_st_alloc;
2707
2708         ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2709         if (ret)
2710                 goto err_sg_alloc;
2711
2712         /* Populate source page list from the object. */
2713         i = 0;
2714         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2715                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2716                 i++;
2717         }
2718
2719         /* Rotate the pages. */
2720         rotate_pages(page_addr_list, width_pages, height_pages, st);
2721
2722         DRM_DEBUG_KMS(
2723                       "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2724                       size, rot_info->pitch, rot_info->height,
2725                       rot_info->pixel_format, width_pages, height_pages,
2726                       rot_pages);
2727
2728         drm_free_large(page_addr_list);
2729
2730         return st;
2731
2732 err_sg_alloc:
2733         kfree(st);
2734 err_st_alloc:
2735         drm_free_large(page_addr_list);
2736
2737         DRM_DEBUG_KMS(
2738                       "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2739                       size, ret, rot_info->pitch, rot_info->height,
2740                       rot_info->pixel_format, width_pages, height_pages,
2741                       rot_pages);
2742         return ERR_PTR(ret);
2743 }
2744 #endif
2745
2746 static inline int
2747 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2748 {
2749         int ret = 0;
2750
2751         if (vma->ggtt_view.pages)
2752                 return 0;
2753
2754         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2755                 vma->ggtt_view.pages = vma->obj->pages;
2756 #if 0
2757         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2758                 vma->ggtt_view.pages =
2759                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2760 #endif
2761         else
2762                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2763                           vma->ggtt_view.type);
2764
2765         if (!vma->ggtt_view.pages) {
2766                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2767                           vma->ggtt_view.type);
2768                 ret = -EINVAL;
2769         } else if (IS_ERR(vma->ggtt_view.pages)) {
2770                 ret = PTR_ERR(vma->ggtt_view.pages);
2771                 vma->ggtt_view.pages = NULL;
2772                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2773                           vma->ggtt_view.type, ret);
2774         }
2775
2776         return ret;
2777 }
2778
2779 /**
2780  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2781  * @vma: VMA to map
2782  * @cache_level: mapping cache level
2783  * @flags: flags like global or local mapping
2784  *
2785  * DMA addresses are taken from the scatter-gather table of this object (or of
2786  * this VMA in case of non-default GGTT views) and PTE entries set up.
2787  * Note that DMA addresses are also the only part of the SG table we care about.
2788  */
2789 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2790                   u32 flags)
2791 {
2792         if (i915_is_ggtt(vma->vm)) {
2793                 int ret = i915_get_ggtt_vma_pages(vma);
2794
2795                 if (ret)
2796                         return ret;
2797         }
2798
2799         vma->bind_vma(vma, cache_level, flags);
2800
2801         return 0;
2802 }