Change KM_PUSHPAGE -> KM_SLEEP
[freebsd.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49  * When a vdev is added, it will be divided into approximately (but no
50  * more than) this number of metaslabs.
51  */
52 int metaslabs_per_vdev = 200;
53
54 /*
55  * Virtual device management.
56  */
57
58 static vdev_ops_t *vdev_ops_table[] = {
59         &vdev_root_ops,
60         &vdev_raidz_ops,
61         &vdev_mirror_ops,
62         &vdev_replacing_ops,
63         &vdev_spare_ops,
64         &vdev_disk_ops,
65         &vdev_file_ops,
66         &vdev_missing_ops,
67         &vdev_hole_ops,
68         NULL
69 };
70
71 /*
72  * Given a vdev type, return the appropriate ops vector.
73  */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77         vdev_ops_t *ops, **opspp;
78
79         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80                 if (strcmp(ops->vdev_op_type, type) == 0)
81                         break;
82
83         return (ops);
84 }
85
86 /*
87  * Default asize function: return the MAX of psize with the asize of
88  * all children.  This is what's used by anything other than RAID-Z.
89  */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94         uint64_t csize;
95         int c;
96
97         for (c = 0; c < vd->vdev_children; c++) {
98                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99                 asize = MAX(asize, csize);
100         }
101
102         return (asize);
103 }
104
105 /*
106  * Get the minimum allocatable size. We define the allocatable size as
107  * the vdev's asize rounded to the nearest metaslab. This allows us to
108  * replace or attach devices which don't have the same physical size but
109  * can still satisfy the same number of allocations.
110  */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114         vdev_t *pvd = vd->vdev_parent;
115
116         /*
117          * If our parent is NULL (inactive spare or cache) or is the root,
118          * just return our own asize.
119          */
120         if (pvd == NULL)
121                 return (vd->vdev_asize);
122
123         /*
124          * The top-level vdev just returns the allocatable size rounded
125          * to the nearest metaslab.
126          */
127         if (vd == vd->vdev_top)
128                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130         /*
131          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132          * so each child must provide at least 1/Nth of its asize.
133          */
134         if (pvd->vdev_ops == &vdev_raidz_ops)
135                 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137         return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143         int c;
144         vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146         for (c = 0; c < vd->vdev_children; c++)
147                 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153         vdev_t *rvd = spa->spa_root_vdev;
154
155         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157         if (vdev < rvd->vdev_children) {
158                 ASSERT(rvd->vdev_child[vdev] != NULL);
159                 return (rvd->vdev_child[vdev]);
160         }
161
162         return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168         vdev_t *mvd;
169         int c;
170
171         if (vd->vdev_guid == guid)
172                 return (vd);
173
174         for (c = 0; c < vd->vdev_children; c++)
175                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176                     NULL)
177                         return (mvd);
178
179         return (NULL);
180 }
181
182 void
183 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
184 {
185         size_t oldsize, newsize;
186         uint64_t id = cvd->vdev_id;
187         vdev_t **newchild;
188
189         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
190         ASSERT(cvd->vdev_parent == NULL);
191
192         cvd->vdev_parent = pvd;
193
194         if (pvd == NULL)
195                 return;
196
197         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
198
199         oldsize = pvd->vdev_children * sizeof (vdev_t *);
200         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
201         newsize = pvd->vdev_children * sizeof (vdev_t *);
202
203         newchild = kmem_alloc(newsize, KM_SLEEP);
204         if (pvd->vdev_child != NULL) {
205                 bcopy(pvd->vdev_child, newchild, oldsize);
206                 kmem_free(pvd->vdev_child, oldsize);
207         }
208
209         pvd->vdev_child = newchild;
210         pvd->vdev_child[id] = cvd;
211
212         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
213         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
214
215         /*
216          * Walk up all ancestors to update guid sum.
217          */
218         for (; pvd != NULL; pvd = pvd->vdev_parent)
219                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
220 }
221
222 void
223 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
224 {
225         int c;
226         uint_t id = cvd->vdev_id;
227
228         ASSERT(cvd->vdev_parent == pvd);
229
230         if (pvd == NULL)
231                 return;
232
233         ASSERT(id < pvd->vdev_children);
234         ASSERT(pvd->vdev_child[id] == cvd);
235
236         pvd->vdev_child[id] = NULL;
237         cvd->vdev_parent = NULL;
238
239         for (c = 0; c < pvd->vdev_children; c++)
240                 if (pvd->vdev_child[c])
241                         break;
242
243         if (c == pvd->vdev_children) {
244                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
245                 pvd->vdev_child = NULL;
246                 pvd->vdev_children = 0;
247         }
248
249         /*
250          * Walk up all ancestors to update guid sum.
251          */
252         for (; pvd != NULL; pvd = pvd->vdev_parent)
253                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
254 }
255
256 /*
257  * Remove any holes in the child array.
258  */
259 void
260 vdev_compact_children(vdev_t *pvd)
261 {
262         vdev_t **newchild, *cvd;
263         int oldc = pvd->vdev_children;
264         int newc;
265         int c;
266
267         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
268
269         for (c = newc = 0; c < oldc; c++)
270                 if (pvd->vdev_child[c])
271                         newc++;
272
273         newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
274
275         for (c = newc = 0; c < oldc; c++) {
276                 if ((cvd = pvd->vdev_child[c]) != NULL) {
277                         newchild[newc] = cvd;
278                         cvd->vdev_id = newc++;
279                 }
280         }
281
282         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
283         pvd->vdev_child = newchild;
284         pvd->vdev_children = newc;
285 }
286
287 /*
288  * Allocate and minimally initialize a vdev_t.
289  */
290 vdev_t *
291 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
292 {
293         vdev_t *vd;
294         int t;
295
296         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
297
298         if (spa->spa_root_vdev == NULL) {
299                 ASSERT(ops == &vdev_root_ops);
300                 spa->spa_root_vdev = vd;
301                 spa->spa_load_guid = spa_generate_guid(NULL);
302         }
303
304         if (guid == 0 && ops != &vdev_hole_ops) {
305                 if (spa->spa_root_vdev == vd) {
306                         /*
307                          * The root vdev's guid will also be the pool guid,
308                          * which must be unique among all pools.
309                          */
310                         guid = spa_generate_guid(NULL);
311                 } else {
312                         /*
313                          * Any other vdev's guid must be unique within the pool.
314                          */
315                         guid = spa_generate_guid(spa);
316                 }
317                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
318         }
319
320         vd->vdev_spa = spa;
321         vd->vdev_id = id;
322         vd->vdev_guid = guid;
323         vd->vdev_guid_sum = guid;
324         vd->vdev_ops = ops;
325         vd->vdev_state = VDEV_STATE_CLOSED;
326         vd->vdev_ishole = (ops == &vdev_hole_ops);
327
328         list_link_init(&vd->vdev_config_dirty_node);
329         list_link_init(&vd->vdev_state_dirty_node);
330         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
331         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
332         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
333         for (t = 0; t < DTL_TYPES; t++) {
334                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
335                     &vd->vdev_dtl_lock);
336         }
337         txg_list_create(&vd->vdev_ms_list,
338             offsetof(struct metaslab, ms_txg_node));
339         txg_list_create(&vd->vdev_dtl_list,
340             offsetof(struct vdev, vdev_dtl_node));
341         vd->vdev_stat.vs_timestamp = gethrtime();
342         vdev_queue_init(vd);
343         vdev_cache_init(vd);
344
345         return (vd);
346 }
347
348 /*
349  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
350  * creating a new vdev or loading an existing one - the behavior is slightly
351  * different for each case.
352  */
353 int
354 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
355     int alloctype)
356 {
357         vdev_ops_t *ops;
358         char *type;
359         uint64_t guid = 0, islog, nparity;
360         vdev_t *vd;
361
362         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
363
364         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
365                 return (SET_ERROR(EINVAL));
366
367         if ((ops = vdev_getops(type)) == NULL)
368                 return (SET_ERROR(EINVAL));
369
370         /*
371          * If this is a load, get the vdev guid from the nvlist.
372          * Otherwise, vdev_alloc_common() will generate one for us.
373          */
374         if (alloctype == VDEV_ALLOC_LOAD) {
375                 uint64_t label_id;
376
377                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
378                     label_id != id)
379                         return (SET_ERROR(EINVAL));
380
381                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382                         return (SET_ERROR(EINVAL));
383         } else if (alloctype == VDEV_ALLOC_SPARE) {
384                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385                         return (SET_ERROR(EINVAL));
386         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
387                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
388                         return (SET_ERROR(EINVAL));
389         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
390                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
391                         return (SET_ERROR(EINVAL));
392         }
393
394         /*
395          * The first allocated vdev must be of type 'root'.
396          */
397         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
398                 return (SET_ERROR(EINVAL));
399
400         /*
401          * Determine whether we're a log vdev.
402          */
403         islog = 0;
404         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
405         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
406                 return (SET_ERROR(ENOTSUP));
407
408         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
409                 return (SET_ERROR(ENOTSUP));
410
411         /*
412          * Set the nparity property for RAID-Z vdevs.
413          */
414         nparity = -1ULL;
415         if (ops == &vdev_raidz_ops) {
416                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
417                     &nparity) == 0) {
418                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
419                                 return (SET_ERROR(EINVAL));
420                         /*
421                          * Previous versions could only support 1 or 2 parity
422                          * device.
423                          */
424                         if (nparity > 1 &&
425                             spa_version(spa) < SPA_VERSION_RAIDZ2)
426                                 return (SET_ERROR(ENOTSUP));
427                         if (nparity > 2 &&
428                             spa_version(spa) < SPA_VERSION_RAIDZ3)
429                                 return (SET_ERROR(ENOTSUP));
430                 } else {
431                         /*
432                          * We require the parity to be specified for SPAs that
433                          * support multiple parity levels.
434                          */
435                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
436                                 return (SET_ERROR(EINVAL));
437                         /*
438                          * Otherwise, we default to 1 parity device for RAID-Z.
439                          */
440                         nparity = 1;
441                 }
442         } else {
443                 nparity = 0;
444         }
445         ASSERT(nparity != -1ULL);
446
447         vd = vdev_alloc_common(spa, id, guid, ops);
448
449         vd->vdev_islog = islog;
450         vd->vdev_nparity = nparity;
451
452         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
453                 vd->vdev_path = spa_strdup(vd->vdev_path);
454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
455                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
456         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
457             &vd->vdev_physpath) == 0)
458                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
459         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
460                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
461
462         /*
463          * Set the whole_disk property.  If it's not specified, leave the value
464          * as -1.
465          */
466         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
467             &vd->vdev_wholedisk) != 0)
468                 vd->vdev_wholedisk = -1ULL;
469
470         /*
471          * Look for the 'not present' flag.  This will only be set if the device
472          * was not present at the time of import.
473          */
474         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
475             &vd->vdev_not_present);
476
477         /*
478          * Get the alignment requirement.
479          */
480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
481
482         /*
483          * Retrieve the vdev creation time.
484          */
485         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
486             &vd->vdev_crtxg);
487
488         /*
489          * If we're a top-level vdev, try to load the allocation parameters.
490          */
491         if (parent && !parent->vdev_parent &&
492             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
493                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
494                     &vd->vdev_ms_array);
495                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
496                     &vd->vdev_ms_shift);
497                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
498                     &vd->vdev_asize);
499                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
500                     &vd->vdev_removing);
501         }
502
503         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
504                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
505                     alloctype == VDEV_ALLOC_ADD ||
506                     alloctype == VDEV_ALLOC_SPLIT ||
507                     alloctype == VDEV_ALLOC_ROOTPOOL);
508                 vd->vdev_mg = metaslab_group_create(islog ?
509                     spa_log_class(spa) : spa_normal_class(spa), vd);
510         }
511
512         /*
513          * If we're a leaf vdev, try to load the DTL object and other state.
514          */
515         if (vd->vdev_ops->vdev_op_leaf &&
516             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
517             alloctype == VDEV_ALLOC_ROOTPOOL)) {
518                 if (alloctype == VDEV_ALLOC_LOAD) {
519                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
520                             &vd->vdev_dtl_object);
521                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
522                             &vd->vdev_unspare);
523                 }
524
525                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
526                         uint64_t spare = 0;
527
528                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
529                             &spare) == 0 && spare)
530                                 spa_spare_add(vd);
531                 }
532
533                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
534                     &vd->vdev_offline);
535
536                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
537                     &vd->vdev_resilver_txg);
538
539                 /*
540                  * When importing a pool, we want to ignore the persistent fault
541                  * state, as the diagnosis made on another system may not be
542                  * valid in the current context.  Local vdevs will
543                  * remain in the faulted state.
544                  */
545                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
546                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
547                             &vd->vdev_faulted);
548                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
549                             &vd->vdev_degraded);
550                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
551                             &vd->vdev_removed);
552
553                         if (vd->vdev_faulted || vd->vdev_degraded) {
554                                 char *aux;
555
556                                 vd->vdev_label_aux =
557                                     VDEV_AUX_ERR_EXCEEDED;
558                                 if (nvlist_lookup_string(nv,
559                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
560                                     strcmp(aux, "external") == 0)
561                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
562                         }
563                 }
564         }
565
566         /*
567          * Add ourselves to the parent's list of children.
568          */
569         vdev_add_child(parent, vd);
570
571         *vdp = vd;
572
573         return (0);
574 }
575
576 void
577 vdev_free(vdev_t *vd)
578 {
579         int c, t;
580         spa_t *spa = vd->vdev_spa;
581
582         /*
583          * vdev_free() implies closing the vdev first.  This is simpler than
584          * trying to ensure complicated semantics for all callers.
585          */
586         vdev_close(vd);
587
588         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
589         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
590
591         /*
592          * Free all children.
593          */
594         for (c = 0; c < vd->vdev_children; c++)
595                 vdev_free(vd->vdev_child[c]);
596
597         ASSERT(vd->vdev_child == NULL);
598         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
599
600         /*
601          * Discard allocation state.
602          */
603         if (vd->vdev_mg != NULL) {
604                 vdev_metaslab_fini(vd);
605                 metaslab_group_destroy(vd->vdev_mg);
606         }
607
608         ASSERT0(vd->vdev_stat.vs_space);
609         ASSERT0(vd->vdev_stat.vs_dspace);
610         ASSERT0(vd->vdev_stat.vs_alloc);
611
612         /*
613          * Remove this vdev from its parent's child list.
614          */
615         vdev_remove_child(vd->vdev_parent, vd);
616
617         ASSERT(vd->vdev_parent == NULL);
618
619         /*
620          * Clean up vdev structure.
621          */
622         vdev_queue_fini(vd);
623         vdev_cache_fini(vd);
624
625         if (vd->vdev_path)
626                 spa_strfree(vd->vdev_path);
627         if (vd->vdev_devid)
628                 spa_strfree(vd->vdev_devid);
629         if (vd->vdev_physpath)
630                 spa_strfree(vd->vdev_physpath);
631         if (vd->vdev_fru)
632                 spa_strfree(vd->vdev_fru);
633
634         if (vd->vdev_isspare)
635                 spa_spare_remove(vd);
636         if (vd->vdev_isl2cache)
637                 spa_l2cache_remove(vd);
638
639         txg_list_destroy(&vd->vdev_ms_list);
640         txg_list_destroy(&vd->vdev_dtl_list);
641
642         mutex_enter(&vd->vdev_dtl_lock);
643         space_map_close(vd->vdev_dtl_sm);
644         for (t = 0; t < DTL_TYPES; t++) {
645                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
646                 range_tree_destroy(vd->vdev_dtl[t]);
647         }
648         mutex_exit(&vd->vdev_dtl_lock);
649
650         mutex_destroy(&vd->vdev_dtl_lock);
651         mutex_destroy(&vd->vdev_stat_lock);
652         mutex_destroy(&vd->vdev_probe_lock);
653
654         if (vd == spa->spa_root_vdev)
655                 spa->spa_root_vdev = NULL;
656
657         kmem_free(vd, sizeof (vdev_t));
658 }
659
660 /*
661  * Transfer top-level vdev state from svd to tvd.
662  */
663 static void
664 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
665 {
666         spa_t *spa = svd->vdev_spa;
667         metaslab_t *msp;
668         vdev_t *vd;
669         int t;
670
671         ASSERT(tvd == tvd->vdev_top);
672
673         tvd->vdev_ms_array = svd->vdev_ms_array;
674         tvd->vdev_ms_shift = svd->vdev_ms_shift;
675         tvd->vdev_ms_count = svd->vdev_ms_count;
676
677         svd->vdev_ms_array = 0;
678         svd->vdev_ms_shift = 0;
679         svd->vdev_ms_count = 0;
680
681         if (tvd->vdev_mg)
682                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
683         tvd->vdev_mg = svd->vdev_mg;
684         tvd->vdev_ms = svd->vdev_ms;
685
686         svd->vdev_mg = NULL;
687         svd->vdev_ms = NULL;
688
689         if (tvd->vdev_mg != NULL)
690                 tvd->vdev_mg->mg_vd = tvd;
691
692         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
693         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
694         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
695
696         svd->vdev_stat.vs_alloc = 0;
697         svd->vdev_stat.vs_space = 0;
698         svd->vdev_stat.vs_dspace = 0;
699
700         for (t = 0; t < TXG_SIZE; t++) {
701                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
702                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
703                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
704                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
705                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
706                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
707         }
708
709         if (list_link_active(&svd->vdev_config_dirty_node)) {
710                 vdev_config_clean(svd);
711                 vdev_config_dirty(tvd);
712         }
713
714         if (list_link_active(&svd->vdev_state_dirty_node)) {
715                 vdev_state_clean(svd);
716                 vdev_state_dirty(tvd);
717         }
718
719         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
720         svd->vdev_deflate_ratio = 0;
721
722         tvd->vdev_islog = svd->vdev_islog;
723         svd->vdev_islog = 0;
724 }
725
726 static void
727 vdev_top_update(vdev_t *tvd, vdev_t *vd)
728 {
729         int c;
730
731         if (vd == NULL)
732                 return;
733
734         vd->vdev_top = tvd;
735
736         for (c = 0; c < vd->vdev_children; c++)
737                 vdev_top_update(tvd, vd->vdev_child[c]);
738 }
739
740 /*
741  * Add a mirror/replacing vdev above an existing vdev.
742  */
743 vdev_t *
744 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
745 {
746         spa_t *spa = cvd->vdev_spa;
747         vdev_t *pvd = cvd->vdev_parent;
748         vdev_t *mvd;
749
750         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
751
752         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
753
754         mvd->vdev_asize = cvd->vdev_asize;
755         mvd->vdev_min_asize = cvd->vdev_min_asize;
756         mvd->vdev_max_asize = cvd->vdev_max_asize;
757         mvd->vdev_ashift = cvd->vdev_ashift;
758         mvd->vdev_state = cvd->vdev_state;
759         mvd->vdev_crtxg = cvd->vdev_crtxg;
760
761         vdev_remove_child(pvd, cvd);
762         vdev_add_child(pvd, mvd);
763         cvd->vdev_id = mvd->vdev_children;
764         vdev_add_child(mvd, cvd);
765         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
766
767         if (mvd == mvd->vdev_top)
768                 vdev_top_transfer(cvd, mvd);
769
770         return (mvd);
771 }
772
773 /*
774  * Remove a 1-way mirror/replacing vdev from the tree.
775  */
776 void
777 vdev_remove_parent(vdev_t *cvd)
778 {
779         vdev_t *mvd = cvd->vdev_parent;
780         vdev_t *pvd = mvd->vdev_parent;
781
782         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
783
784         ASSERT(mvd->vdev_children == 1);
785         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
786             mvd->vdev_ops == &vdev_replacing_ops ||
787             mvd->vdev_ops == &vdev_spare_ops);
788         cvd->vdev_ashift = mvd->vdev_ashift;
789
790         vdev_remove_child(mvd, cvd);
791         vdev_remove_child(pvd, mvd);
792
793         /*
794          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
795          * Otherwise, we could have detached an offline device, and when we
796          * go to import the pool we'll think we have two top-level vdevs,
797          * instead of a different version of the same top-level vdev.
798          */
799         if (mvd->vdev_top == mvd) {
800                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
801                 cvd->vdev_orig_guid = cvd->vdev_guid;
802                 cvd->vdev_guid += guid_delta;
803                 cvd->vdev_guid_sum += guid_delta;
804
805                 /*
806                  * If pool not set for autoexpand, we need to also preserve
807                  * mvd's asize to prevent automatic expansion of cvd.
808                  * Otherwise if we are adjusting the mirror by attaching and
809                  * detaching children of non-uniform sizes, the mirror could
810                  * autoexpand, unexpectedly requiring larger devices to
811                  * re-establish the mirror.
812                  */
813                 if (!cvd->vdev_spa->spa_autoexpand)
814                         cvd->vdev_asize = mvd->vdev_asize;
815         }
816         cvd->vdev_id = mvd->vdev_id;
817         vdev_add_child(pvd, cvd);
818         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
819
820         if (cvd == cvd->vdev_top)
821                 vdev_top_transfer(mvd, cvd);
822
823         ASSERT(mvd->vdev_children == 0);
824         vdev_free(mvd);
825 }
826
827 int
828 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
829 {
830         spa_t *spa = vd->vdev_spa;
831         objset_t *mos = spa->spa_meta_objset;
832         uint64_t m;
833         uint64_t oldc = vd->vdev_ms_count;
834         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
835         metaslab_t **mspp;
836         int error;
837
838         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
839
840         /*
841          * This vdev is not being allocated from yet or is a hole.
842          */
843         if (vd->vdev_ms_shift == 0)
844                 return (0);
845
846         ASSERT(!vd->vdev_ishole);
847
848         /*
849          * Compute the raidz-deflation ratio.  Note, we hard-code
850          * in 128k (1 << 17) because it is the current "typical" blocksize.
851          * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
852          * or we will inconsistently account for existing bp's.
853          */
854         vd->vdev_deflate_ratio = (1 << 17) /
855             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
856
857         ASSERT(oldc <= newc);
858
859         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
860
861         if (oldc != 0) {
862                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
863                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
864         }
865
866         vd->vdev_ms = mspp;
867         vd->vdev_ms_count = newc;
868
869         for (m = oldc; m < newc; m++) {
870                 uint64_t object = 0;
871
872                 if (txg == 0) {
873                         error = dmu_read(mos, vd->vdev_ms_array,
874                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
875                             DMU_READ_PREFETCH);
876                         if (error)
877                                 return (error);
878                 }
879
880                 error = metaslab_init(vd->vdev_mg, m, object, txg,
881                     &(vd->vdev_ms[m]));
882                 if (error)
883                         return (error);
884         }
885
886         if (txg == 0)
887                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
888
889         /*
890          * If the vdev is being removed we don't activate
891          * the metaslabs since we want to ensure that no new
892          * allocations are performed on this device.
893          */
894         if (oldc == 0 && !vd->vdev_removing)
895                 metaslab_group_activate(vd->vdev_mg);
896
897         if (txg == 0)
898                 spa_config_exit(spa, SCL_ALLOC, FTAG);
899
900         return (0);
901 }
902
903 void
904 vdev_metaslab_fini(vdev_t *vd)
905 {
906         uint64_t m;
907         uint64_t count = vd->vdev_ms_count;
908
909         if (vd->vdev_ms != NULL) {
910                 metaslab_group_passivate(vd->vdev_mg);
911                 for (m = 0; m < count; m++) {
912                         metaslab_t *msp = vd->vdev_ms[m];
913
914                         if (msp != NULL)
915                                 metaslab_fini(msp);
916                 }
917                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
918                 vd->vdev_ms = NULL;
919         }
920
921         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
922 }
923
924 typedef struct vdev_probe_stats {
925         boolean_t       vps_readable;
926         boolean_t       vps_writeable;
927         int             vps_flags;
928 } vdev_probe_stats_t;
929
930 static void
931 vdev_probe_done(zio_t *zio)
932 {
933         spa_t *spa = zio->io_spa;
934         vdev_t *vd = zio->io_vd;
935         vdev_probe_stats_t *vps = zio->io_private;
936
937         ASSERT(vd->vdev_probe_zio != NULL);
938
939         if (zio->io_type == ZIO_TYPE_READ) {
940                 if (zio->io_error == 0)
941                         vps->vps_readable = 1;
942                 if (zio->io_error == 0 && spa_writeable(spa)) {
943                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
944                             zio->io_offset, zio->io_size, zio->io_data,
945                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
946                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
947                 } else {
948                         zio_buf_free(zio->io_data, zio->io_size);
949                 }
950         } else if (zio->io_type == ZIO_TYPE_WRITE) {
951                 if (zio->io_error == 0)
952                         vps->vps_writeable = 1;
953                 zio_buf_free(zio->io_data, zio->io_size);
954         } else if (zio->io_type == ZIO_TYPE_NULL) {
955                 zio_t *pio;
956
957                 vd->vdev_cant_read |= !vps->vps_readable;
958                 vd->vdev_cant_write |= !vps->vps_writeable;
959
960                 if (vdev_readable(vd) &&
961                     (vdev_writeable(vd) || !spa_writeable(spa))) {
962                         zio->io_error = 0;
963                 } else {
964                         ASSERT(zio->io_error != 0);
965                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
966                             spa, vd, NULL, 0, 0);
967                         zio->io_error = SET_ERROR(ENXIO);
968                 }
969
970                 mutex_enter(&vd->vdev_probe_lock);
971                 ASSERT(vd->vdev_probe_zio == zio);
972                 vd->vdev_probe_zio = NULL;
973                 mutex_exit(&vd->vdev_probe_lock);
974
975                 while ((pio = zio_walk_parents(zio)) != NULL)
976                         if (!vdev_accessible(vd, pio))
977                                 pio->io_error = SET_ERROR(ENXIO);
978
979                 kmem_free(vps, sizeof (*vps));
980         }
981 }
982
983 /*
984  * Determine whether this device is accessible.
985  *
986  * Read and write to several known locations: the pad regions of each
987  * vdev label but the first, which we leave alone in case it contains
988  * a VTOC.
989  */
990 zio_t *
991 vdev_probe(vdev_t *vd, zio_t *zio)
992 {
993         spa_t *spa = vd->vdev_spa;
994         vdev_probe_stats_t *vps = NULL;
995         zio_t *pio;
996         int l;
997
998         ASSERT(vd->vdev_ops->vdev_op_leaf);
999
1000         /*
1001          * Don't probe the probe.
1002          */
1003         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1004                 return (NULL);
1005
1006         /*
1007          * To prevent 'probe storms' when a device fails, we create
1008          * just one probe i/o at a time.  All zios that want to probe
1009          * this vdev will become parents of the probe io.
1010          */
1011         mutex_enter(&vd->vdev_probe_lock);
1012
1013         if ((pio = vd->vdev_probe_zio) == NULL) {
1014                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1015
1016                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1017                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1018                     ZIO_FLAG_TRYHARD;
1019
1020                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1021                         /*
1022                          * vdev_cant_read and vdev_cant_write can only
1023                          * transition from TRUE to FALSE when we have the
1024                          * SCL_ZIO lock as writer; otherwise they can only
1025                          * transition from FALSE to TRUE.  This ensures that
1026                          * any zio looking at these values can assume that
1027                          * failures persist for the life of the I/O.  That's
1028                          * important because when a device has intermittent
1029                          * connectivity problems, we want to ensure that
1030                          * they're ascribed to the device (ENXIO) and not
1031                          * the zio (EIO).
1032                          *
1033                          * Since we hold SCL_ZIO as writer here, clear both
1034                          * values so the probe can reevaluate from first
1035                          * principles.
1036                          */
1037                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1038                         vd->vdev_cant_read = B_FALSE;
1039                         vd->vdev_cant_write = B_FALSE;
1040                 }
1041
1042                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1043                     vdev_probe_done, vps,
1044                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1045
1046                 /*
1047                  * We can't change the vdev state in this context, so we
1048                  * kick off an async task to do it on our behalf.
1049                  */
1050                 if (zio != NULL) {
1051                         vd->vdev_probe_wanted = B_TRUE;
1052                         spa_async_request(spa, SPA_ASYNC_PROBE);
1053                 }
1054         }
1055
1056         if (zio != NULL)
1057                 zio_add_child(zio, pio);
1058
1059         mutex_exit(&vd->vdev_probe_lock);
1060
1061         if (vps == NULL) {
1062                 ASSERT(zio != NULL);
1063                 return (NULL);
1064         }
1065
1066         for (l = 1; l < VDEV_LABELS; l++) {
1067                 zio_nowait(zio_read_phys(pio, vd,
1068                     vdev_label_offset(vd->vdev_psize, l,
1069                     offsetof(vdev_label_t, vl_pad2)),
1070                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1071                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1072                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1073         }
1074
1075         if (zio == NULL)
1076                 return (pio);
1077
1078         zio_nowait(pio);
1079         return (NULL);
1080 }
1081
1082 static void
1083 vdev_open_child(void *arg)
1084 {
1085         vdev_t *vd = arg;
1086
1087         vd->vdev_open_thread = curthread;
1088         vd->vdev_open_error = vdev_open(vd);
1089         vd->vdev_open_thread = NULL;
1090 }
1091
1092 static boolean_t
1093 vdev_uses_zvols(vdev_t *vd)
1094 {
1095         int c;
1096
1097 #ifdef _KERNEL
1098         if (zvol_is_zvol(vd->vdev_path))
1099                 return (B_TRUE);
1100 #endif
1101
1102         for (c = 0; c < vd->vdev_children; c++)
1103                 if (vdev_uses_zvols(vd->vdev_child[c]))
1104                         return (B_TRUE);
1105
1106         return (B_FALSE);
1107 }
1108
1109 void
1110 vdev_open_children(vdev_t *vd)
1111 {
1112         taskq_t *tq;
1113         int children = vd->vdev_children;
1114         int c;
1115
1116         /*
1117          * in order to handle pools on top of zvols, do the opens
1118          * in a single thread so that the same thread holds the
1119          * spa_namespace_lock
1120          */
1121         if (vdev_uses_zvols(vd)) {
1122                 for (c = 0; c < children; c++)
1123                         vd->vdev_child[c]->vdev_open_error =
1124                             vdev_open(vd->vdev_child[c]);
1125                 return;
1126         }
1127         tq = taskq_create("vdev_open", children, minclsyspri,
1128             children, children, TASKQ_PREPOPULATE);
1129
1130         for (c = 0; c < children; c++)
1131                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1132                     TQ_SLEEP) != 0);
1133
1134         taskq_destroy(tq);
1135 }
1136
1137 /*
1138  * Prepare a virtual device for access.
1139  */
1140 int
1141 vdev_open(vdev_t *vd)
1142 {
1143         spa_t *spa = vd->vdev_spa;
1144         int error;
1145         uint64_t osize = 0;
1146         uint64_t max_osize = 0;
1147         uint64_t asize, max_asize, psize;
1148         uint64_t ashift = 0;
1149         int c;
1150
1151         ASSERT(vd->vdev_open_thread == curthread ||
1152             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1153         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1154             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1155             vd->vdev_state == VDEV_STATE_OFFLINE);
1156
1157         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1158         vd->vdev_cant_read = B_FALSE;
1159         vd->vdev_cant_write = B_FALSE;
1160         vd->vdev_min_asize = vdev_get_min_asize(vd);
1161
1162         /*
1163          * If this vdev is not removed, check its fault status.  If it's
1164          * faulted, bail out of the open.
1165          */
1166         if (!vd->vdev_removed && vd->vdev_faulted) {
1167                 ASSERT(vd->vdev_children == 0);
1168                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1169                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1170                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1171                     vd->vdev_label_aux);
1172                 return (SET_ERROR(ENXIO));
1173         } else if (vd->vdev_offline) {
1174                 ASSERT(vd->vdev_children == 0);
1175                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1176                 return (SET_ERROR(ENXIO));
1177         }
1178
1179         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1180
1181         /*
1182          * Reset the vdev_reopening flag so that we actually close
1183          * the vdev on error.
1184          */
1185         vd->vdev_reopening = B_FALSE;
1186         if (zio_injection_enabled && error == 0)
1187                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1188
1189         if (error) {
1190                 if (vd->vdev_removed &&
1191                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1192                         vd->vdev_removed = B_FALSE;
1193
1194                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1195                     vd->vdev_stat.vs_aux);
1196                 return (error);
1197         }
1198
1199         vd->vdev_removed = B_FALSE;
1200
1201         /*
1202          * Recheck the faulted flag now that we have confirmed that
1203          * the vdev is accessible.  If we're faulted, bail.
1204          */
1205         if (vd->vdev_faulted) {
1206                 ASSERT(vd->vdev_children == 0);
1207                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1208                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1209                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1210                     vd->vdev_label_aux);
1211                 return (SET_ERROR(ENXIO));
1212         }
1213
1214         if (vd->vdev_degraded) {
1215                 ASSERT(vd->vdev_children == 0);
1216                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1217                     VDEV_AUX_ERR_EXCEEDED);
1218         } else {
1219                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1220         }
1221
1222         /*
1223          * For hole or missing vdevs we just return success.
1224          */
1225         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1226                 return (0);
1227
1228         for (c = 0; c < vd->vdev_children; c++) {
1229                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1230                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1231                             VDEV_AUX_NONE);
1232                         break;
1233                 }
1234         }
1235
1236         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1237         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1238
1239         if (vd->vdev_children == 0) {
1240                 if (osize < SPA_MINDEVSIZE) {
1241                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1242                             VDEV_AUX_TOO_SMALL);
1243                         return (SET_ERROR(EOVERFLOW));
1244                 }
1245                 psize = osize;
1246                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1247                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1248                     VDEV_LABEL_END_SIZE);
1249         } else {
1250                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1251                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1252                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253                             VDEV_AUX_TOO_SMALL);
1254                         return (SET_ERROR(EOVERFLOW));
1255                 }
1256                 psize = 0;
1257                 asize = osize;
1258                 max_asize = max_osize;
1259         }
1260
1261         vd->vdev_psize = psize;
1262
1263         /*
1264          * Make sure the allocatable size hasn't shrunk.
1265          */
1266         if (asize < vd->vdev_min_asize) {
1267                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268                     VDEV_AUX_BAD_LABEL);
1269                 return (SET_ERROR(EINVAL));
1270         }
1271
1272         if (vd->vdev_asize == 0) {
1273                 /*
1274                  * This is the first-ever open, so use the computed values.
1275                  * For compatibility, a different ashift can be requested.
1276                  */
1277                 vd->vdev_asize = asize;
1278                 vd->vdev_max_asize = max_asize;
1279                 if (vd->vdev_ashift == 0)
1280                         vd->vdev_ashift = ashift;
1281         } else {
1282                 /*
1283                  * Detect if the alignment requirement has increased.
1284                  * We don't want to make the pool unavailable, just
1285                  * post an event instead.
1286                  */
1287                 if (ashift > vd->vdev_top->vdev_ashift &&
1288                     vd->vdev_ops->vdev_op_leaf) {
1289                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1290                             spa, vd, NULL, 0, 0);
1291                 }
1292
1293                 vd->vdev_max_asize = max_asize;
1294         }
1295
1296         /*
1297          * If all children are healthy and the asize has increased,
1298          * then we've experienced dynamic LUN growth.  If automatic
1299          * expansion is enabled then use the additional space.
1300          */
1301         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1302             (vd->vdev_expanding || spa->spa_autoexpand))
1303                 vd->vdev_asize = asize;
1304
1305         vdev_set_min_asize(vd);
1306
1307         /*
1308          * Ensure we can issue some IO before declaring the
1309          * vdev open for business.
1310          */
1311         if (vd->vdev_ops->vdev_op_leaf &&
1312             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1313                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1314                     VDEV_AUX_ERR_EXCEEDED);
1315                 return (error);
1316         }
1317
1318         /*
1319          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1320          * resilver.  But don't do this if we are doing a reopen for a scrub,
1321          * since this would just restart the scrub we are already doing.
1322          */
1323         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1324             vdev_resilver_needed(vd, NULL, NULL))
1325                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1326
1327         return (0);
1328 }
1329
1330 /*
1331  * Called once the vdevs are all opened, this routine validates the label
1332  * contents.  This needs to be done before vdev_load() so that we don't
1333  * inadvertently do repair I/Os to the wrong device.
1334  *
1335  * If 'strict' is false ignore the spa guid check. This is necessary because
1336  * if the machine crashed during a re-guid the new guid might have been written
1337  * to all of the vdev labels, but not the cached config. The strict check
1338  * will be performed when the pool is opened again using the mos config.
1339  *
1340  * This function will only return failure if one of the vdevs indicates that it
1341  * has since been destroyed or exported.  This is only possible if
1342  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1343  * will be updated but the function will return 0.
1344  */
1345 int
1346 vdev_validate(vdev_t *vd, boolean_t strict)
1347 {
1348         spa_t *spa = vd->vdev_spa;
1349         nvlist_t *label;
1350         uint64_t guid = 0, top_guid;
1351         uint64_t state;
1352         int c;
1353
1354         for (c = 0; c < vd->vdev_children; c++)
1355                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1356                         return (SET_ERROR(EBADF));
1357
1358         /*
1359          * If the device has already failed, or was marked offline, don't do
1360          * any further validation.  Otherwise, label I/O will fail and we will
1361          * overwrite the previous state.
1362          */
1363         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1364                 uint64_t aux_guid = 0;
1365                 nvlist_t *nvl;
1366                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1367                     spa_last_synced_txg(spa) : -1ULL;
1368
1369                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1370                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1371                             VDEV_AUX_BAD_LABEL);
1372                         return (0);
1373                 }
1374
1375                 /*
1376                  * Determine if this vdev has been split off into another
1377                  * pool.  If so, then refuse to open it.
1378                  */
1379                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1380                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1381                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1382                             VDEV_AUX_SPLIT_POOL);
1383                         nvlist_free(label);
1384                         return (0);
1385                 }
1386
1387                 if (strict && (nvlist_lookup_uint64(label,
1388                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1389                     guid != spa_guid(spa))) {
1390                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1391                             VDEV_AUX_CORRUPT_DATA);
1392                         nvlist_free(label);
1393                         return (0);
1394                 }
1395
1396                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1397                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1398                     &aux_guid) != 0)
1399                         aux_guid = 0;
1400
1401                 /*
1402                  * If this vdev just became a top-level vdev because its
1403                  * sibling was detached, it will have adopted the parent's
1404                  * vdev guid -- but the label may or may not be on disk yet.
1405                  * Fortunately, either version of the label will have the
1406                  * same top guid, so if we're a top-level vdev, we can
1407                  * safely compare to that instead.
1408                  *
1409                  * If we split this vdev off instead, then we also check the
1410                  * original pool's guid.  We don't want to consider the vdev
1411                  * corrupt if it is partway through a split operation.
1412                  */
1413                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1414                     &guid) != 0 ||
1415                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1416                     &top_guid) != 0 ||
1417                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1418                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1419                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1420                             VDEV_AUX_CORRUPT_DATA);
1421                         nvlist_free(label);
1422                         return (0);
1423                 }
1424
1425                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1426                     &state) != 0) {
1427                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1428                             VDEV_AUX_CORRUPT_DATA);
1429                         nvlist_free(label);
1430                         return (0);
1431                 }
1432
1433                 nvlist_free(label);
1434
1435                 /*
1436                  * If this is a verbatim import, no need to check the
1437                  * state of the pool.
1438                  */
1439                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1440                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1441                     state != POOL_STATE_ACTIVE)
1442                         return (SET_ERROR(EBADF));
1443
1444                 /*
1445                  * If we were able to open and validate a vdev that was
1446                  * previously marked permanently unavailable, clear that state
1447                  * now.
1448                  */
1449                 if (vd->vdev_not_present)
1450                         vd->vdev_not_present = 0;
1451         }
1452
1453         return (0);
1454 }
1455
1456 /*
1457  * Close a virtual device.
1458  */
1459 void
1460 vdev_close(vdev_t *vd)
1461 {
1462         vdev_t *pvd = vd->vdev_parent;
1463         ASSERTV(spa_t *spa = vd->vdev_spa);
1464
1465         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1466
1467         /*
1468          * If our parent is reopening, then we are as well, unless we are
1469          * going offline.
1470          */
1471         if (pvd != NULL && pvd->vdev_reopening)
1472                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1473
1474         vd->vdev_ops->vdev_op_close(vd);
1475
1476         vdev_cache_purge(vd);
1477
1478         /*
1479          * We record the previous state before we close it, so that if we are
1480          * doing a reopen(), we don't generate FMA ereports if we notice that
1481          * it's still faulted.
1482          */
1483         vd->vdev_prevstate = vd->vdev_state;
1484
1485         if (vd->vdev_offline)
1486                 vd->vdev_state = VDEV_STATE_OFFLINE;
1487         else
1488                 vd->vdev_state = VDEV_STATE_CLOSED;
1489         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1490 }
1491
1492 void
1493 vdev_hold(vdev_t *vd)
1494 {
1495         spa_t *spa = vd->vdev_spa;
1496         int c;
1497
1498         ASSERT(spa_is_root(spa));
1499         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1500                 return;
1501
1502         for (c = 0; c < vd->vdev_children; c++)
1503                 vdev_hold(vd->vdev_child[c]);
1504
1505         if (vd->vdev_ops->vdev_op_leaf)
1506                 vd->vdev_ops->vdev_op_hold(vd);
1507 }
1508
1509 void
1510 vdev_rele(vdev_t *vd)
1511 {
1512         int c;
1513
1514         ASSERT(spa_is_root(vd->vdev_spa));
1515         for (c = 0; c < vd->vdev_children; c++)
1516                 vdev_rele(vd->vdev_child[c]);
1517
1518         if (vd->vdev_ops->vdev_op_leaf)
1519                 vd->vdev_ops->vdev_op_rele(vd);
1520 }
1521
1522 /*
1523  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1524  * reopen leaf vdevs which had previously been opened as they might deadlock
1525  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1526  * If the leaf has never been opened then open it, as usual.
1527  */
1528 void
1529 vdev_reopen(vdev_t *vd)
1530 {
1531         spa_t *spa = vd->vdev_spa;
1532
1533         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1534
1535         /* set the reopening flag unless we're taking the vdev offline */
1536         vd->vdev_reopening = !vd->vdev_offline;
1537         vdev_close(vd);
1538         (void) vdev_open(vd);
1539
1540         /*
1541          * Call vdev_validate() here to make sure we have the same device.
1542          * Otherwise, a device with an invalid label could be successfully
1543          * opened in response to vdev_reopen().
1544          */
1545         if (vd->vdev_aux) {
1546                 (void) vdev_validate_aux(vd);
1547                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1548                     vd->vdev_aux == &spa->spa_l2cache &&
1549                     !l2arc_vdev_present(vd))
1550                         l2arc_add_vdev(spa, vd);
1551         } else {
1552                 (void) vdev_validate(vd, B_TRUE);
1553         }
1554
1555         /*
1556          * Reassess parent vdev's health.
1557          */
1558         vdev_propagate_state(vd);
1559 }
1560
1561 int
1562 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1563 {
1564         int error;
1565
1566         /*
1567          * Normally, partial opens (e.g. of a mirror) are allowed.
1568          * For a create, however, we want to fail the request if
1569          * there are any components we can't open.
1570          */
1571         error = vdev_open(vd);
1572
1573         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1574                 vdev_close(vd);
1575                 return (error ? error : ENXIO);
1576         }
1577
1578         /*
1579          * Recursively load DTLs and initialize all labels.
1580          */
1581         if ((error = vdev_dtl_load(vd)) != 0 ||
1582             (error = vdev_label_init(vd, txg, isreplacing ?
1583             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1584                 vdev_close(vd);
1585                 return (error);
1586         }
1587
1588         return (0);
1589 }
1590
1591 void
1592 vdev_metaslab_set_size(vdev_t *vd)
1593 {
1594         /*
1595          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1596          */
1597         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1598         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1599 }
1600
1601 void
1602 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1603 {
1604         ASSERT(vd == vd->vdev_top);
1605         ASSERT(!vd->vdev_ishole);
1606         ASSERT(ISP2(flags));
1607         ASSERT(spa_writeable(vd->vdev_spa));
1608
1609         if (flags & VDD_METASLAB)
1610                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1611
1612         if (flags & VDD_DTL)
1613                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1614
1615         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1616 }
1617
1618 void
1619 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1620 {
1621         int c;
1622
1623         for (c = 0; c < vd->vdev_children; c++)
1624                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1625
1626         if (vd->vdev_ops->vdev_op_leaf)
1627                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1628 }
1629
1630 /*
1631  * DTLs.
1632  *
1633  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1634  * the vdev has less than perfect replication.  There are four kinds of DTL:
1635  *
1636  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1637  *
1638  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1639  *
1640  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1641  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1642  *      txgs that was scrubbed.
1643  *
1644  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1645  *      persistent errors or just some device being offline.
1646  *      Unlike the other three, the DTL_OUTAGE map is not generally
1647  *      maintained; it's only computed when needed, typically to
1648  *      determine whether a device can be detached.
1649  *
1650  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1651  * either has the data or it doesn't.
1652  *
1653  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1654  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1655  * if any child is less than fully replicated, then so is its parent.
1656  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1657  * comprising only those txgs which appear in 'maxfaults' or more children;
1658  * those are the txgs we don't have enough replication to read.  For example,
1659  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1660  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1661  * two child DTL_MISSING maps.
1662  *
1663  * It should be clear from the above that to compute the DTLs and outage maps
1664  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1665  * Therefore, that is all we keep on disk.  When loading the pool, or after
1666  * a configuration change, we generate all other DTLs from first principles.
1667  */
1668 void
1669 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1670 {
1671         range_tree_t *rt = vd->vdev_dtl[t];
1672
1673         ASSERT(t < DTL_TYPES);
1674         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1675         ASSERT(spa_writeable(vd->vdev_spa));
1676
1677         mutex_enter(rt->rt_lock);
1678         if (!range_tree_contains(rt, txg, size))
1679                 range_tree_add(rt, txg, size);
1680         mutex_exit(rt->rt_lock);
1681 }
1682
1683 boolean_t
1684 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1685 {
1686         range_tree_t *rt = vd->vdev_dtl[t];
1687         boolean_t dirty = B_FALSE;
1688
1689         ASSERT(t < DTL_TYPES);
1690         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1691
1692         mutex_enter(rt->rt_lock);
1693         if (range_tree_space(rt) != 0)
1694                 dirty = range_tree_contains(rt, txg, size);
1695         mutex_exit(rt->rt_lock);
1696
1697         return (dirty);
1698 }
1699
1700 boolean_t
1701 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1702 {
1703         range_tree_t *rt = vd->vdev_dtl[t];
1704         boolean_t empty;
1705
1706         mutex_enter(rt->rt_lock);
1707         empty = (range_tree_space(rt) == 0);
1708         mutex_exit(rt->rt_lock);
1709
1710         return (empty);
1711 }
1712
1713 /*
1714  * Returns the lowest txg in the DTL range.
1715  */
1716 static uint64_t
1717 vdev_dtl_min(vdev_t *vd)
1718 {
1719         range_seg_t *rs;
1720
1721         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1722         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1723         ASSERT0(vd->vdev_children);
1724
1725         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1726         return (rs->rs_start - 1);
1727 }
1728
1729 /*
1730  * Returns the highest txg in the DTL.
1731  */
1732 static uint64_t
1733 vdev_dtl_max(vdev_t *vd)
1734 {
1735         range_seg_t *rs;
1736
1737         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1738         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1739         ASSERT0(vd->vdev_children);
1740
1741         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1742         return (rs->rs_end);
1743 }
1744
1745 /*
1746  * Determine if a resilvering vdev should remove any DTL entries from
1747  * its range. If the vdev was resilvering for the entire duration of the
1748  * scan then it should excise that range from its DTLs. Otherwise, this
1749  * vdev is considered partially resilvered and should leave its DTL
1750  * entries intact. The comment in vdev_dtl_reassess() describes how we
1751  * excise the DTLs.
1752  */
1753 static boolean_t
1754 vdev_dtl_should_excise(vdev_t *vd)
1755 {
1756         spa_t *spa = vd->vdev_spa;
1757         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1758
1759         ASSERT0(scn->scn_phys.scn_errors);
1760         ASSERT0(vd->vdev_children);
1761
1762         if (vd->vdev_resilver_txg == 0 ||
1763             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1764                 return (B_TRUE);
1765
1766         /*
1767          * When a resilver is initiated the scan will assign the scn_max_txg
1768          * value to the highest txg value that exists in all DTLs. If this
1769          * device's max DTL is not part of this scan (i.e. it is not in
1770          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1771          * for excision.
1772          */
1773         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1774                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1775                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1776                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1777                 return (B_TRUE);
1778         }
1779         return (B_FALSE);
1780 }
1781
1782 /*
1783  * Reassess DTLs after a config change or scrub completion.
1784  */
1785 void
1786 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1787 {
1788         spa_t *spa = vd->vdev_spa;
1789         avl_tree_t reftree;
1790         int c, t, minref;
1791
1792         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1793
1794         for (c = 0; c < vd->vdev_children; c++)
1795                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1796                     scrub_txg, scrub_done);
1797
1798         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1799                 return;
1800
1801         if (vd->vdev_ops->vdev_op_leaf) {
1802                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1803
1804                 mutex_enter(&vd->vdev_dtl_lock);
1805
1806                 /*
1807                  * If we've completed a scan cleanly then determine
1808                  * if this vdev should remove any DTLs. We only want to
1809                  * excise regions on vdevs that were available during
1810                  * the entire duration of this scan.
1811                  */
1812                 if (scrub_txg != 0 &&
1813                     (spa->spa_scrub_started ||
1814                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1815                     vdev_dtl_should_excise(vd)) {
1816                         /*
1817                          * We completed a scrub up to scrub_txg.  If we
1818                          * did it without rebooting, then the scrub dtl
1819                          * will be valid, so excise the old region and
1820                          * fold in the scrub dtl.  Otherwise, leave the
1821                          * dtl as-is if there was an error.
1822                          *
1823                          * There's little trick here: to excise the beginning
1824                          * of the DTL_MISSING map, we put it into a reference
1825                          * tree and then add a segment with refcnt -1 that
1826                          * covers the range [0, scrub_txg).  This means
1827                          * that each txg in that range has refcnt -1 or 0.
1828                          * We then add DTL_SCRUB with a refcnt of 2, so that
1829                          * entries in the range [0, scrub_txg) will have a
1830                          * positive refcnt -- either 1 or 2.  We then convert
1831                          * the reference tree into the new DTL_MISSING map.
1832                          */
1833                         space_reftree_create(&reftree);
1834                         space_reftree_add_map(&reftree,
1835                             vd->vdev_dtl[DTL_MISSING], 1);
1836                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1837                         space_reftree_add_map(&reftree,
1838                             vd->vdev_dtl[DTL_SCRUB], 2);
1839                         space_reftree_generate_map(&reftree,
1840                             vd->vdev_dtl[DTL_MISSING], 1);
1841                         space_reftree_destroy(&reftree);
1842                 }
1843                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1844                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1845                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1846                 if (scrub_done)
1847                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1848                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1849                 if (!vdev_readable(vd))
1850                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1851                 else
1852                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1853                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1854
1855                 /*
1856                  * If the vdev was resilvering and no longer has any
1857                  * DTLs then reset its resilvering flag.
1858                  */
1859                 if (vd->vdev_resilver_txg != 0 &&
1860                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1861                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1862                         vd->vdev_resilver_txg = 0;
1863
1864                 mutex_exit(&vd->vdev_dtl_lock);
1865
1866                 if (txg != 0)
1867                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1868                 return;
1869         }
1870
1871         mutex_enter(&vd->vdev_dtl_lock);
1872         for (t = 0; t < DTL_TYPES; t++) {
1873                 int c;
1874
1875                 /* account for child's outage in parent's missing map */
1876                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1877                 if (t == DTL_SCRUB)
1878                         continue;                       /* leaf vdevs only */
1879                 if (t == DTL_PARTIAL)
1880                         minref = 1;                     /* i.e. non-zero */
1881                 else if (vd->vdev_nparity != 0)
1882                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1883                 else
1884                         minref = vd->vdev_children;     /* any kind of mirror */
1885                 space_reftree_create(&reftree);
1886                 for (c = 0; c < vd->vdev_children; c++) {
1887                         vdev_t *cvd = vd->vdev_child[c];
1888                         mutex_enter(&cvd->vdev_dtl_lock);
1889                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1890                         mutex_exit(&cvd->vdev_dtl_lock);
1891                 }
1892                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1893                 space_reftree_destroy(&reftree);
1894         }
1895         mutex_exit(&vd->vdev_dtl_lock);
1896 }
1897
1898 int
1899 vdev_dtl_load(vdev_t *vd)
1900 {
1901         spa_t *spa = vd->vdev_spa;
1902         objset_t *mos = spa->spa_meta_objset;
1903         int error = 0;
1904         int c;
1905
1906         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1907                 ASSERT(!vd->vdev_ishole);
1908
1909                 error = space_map_open(&vd->vdev_dtl_sm, mos,
1910                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1911                 if (error)
1912                         return (error);
1913                 ASSERT(vd->vdev_dtl_sm != NULL);
1914
1915                 mutex_enter(&vd->vdev_dtl_lock);
1916
1917                 /*
1918                  * Now that we've opened the space_map we need to update
1919                  * the in-core DTL.
1920                  */
1921                 space_map_update(vd->vdev_dtl_sm);
1922
1923                 error = space_map_load(vd->vdev_dtl_sm,
1924                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1925                 mutex_exit(&vd->vdev_dtl_lock);
1926
1927                 return (error);
1928         }
1929
1930         for (c = 0; c < vd->vdev_children; c++) {
1931                 error = vdev_dtl_load(vd->vdev_child[c]);
1932                 if (error != 0)
1933                         break;
1934         }
1935
1936         return (error);
1937 }
1938
1939 void
1940 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1941 {
1942         spa_t *spa = vd->vdev_spa;
1943         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1944         objset_t *mos = spa->spa_meta_objset;
1945         range_tree_t *rtsync;
1946         kmutex_t rtlock;
1947         dmu_tx_t *tx;
1948         uint64_t object = space_map_object(vd->vdev_dtl_sm);
1949
1950         ASSERT(!vd->vdev_ishole);
1951         ASSERT(vd->vdev_ops->vdev_op_leaf);
1952
1953         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1954
1955         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1956                 mutex_enter(&vd->vdev_dtl_lock);
1957                 space_map_free(vd->vdev_dtl_sm, tx);
1958                 space_map_close(vd->vdev_dtl_sm);
1959                 vd->vdev_dtl_sm = NULL;
1960                 mutex_exit(&vd->vdev_dtl_lock);
1961                 dmu_tx_commit(tx);
1962                 return;
1963         }
1964
1965         if (vd->vdev_dtl_sm == NULL) {
1966                 uint64_t new_object;
1967
1968                 new_object = space_map_alloc(mos, tx);
1969                 VERIFY3U(new_object, !=, 0);
1970
1971                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1972                     0, -1ULL, 0, &vd->vdev_dtl_lock));
1973                 ASSERT(vd->vdev_dtl_sm != NULL);
1974         }
1975
1976         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1977
1978         rtsync = range_tree_create(NULL, NULL, &rtlock);
1979
1980         mutex_enter(&rtlock);
1981
1982         mutex_enter(&vd->vdev_dtl_lock);
1983         range_tree_walk(rt, range_tree_add, rtsync);
1984         mutex_exit(&vd->vdev_dtl_lock);
1985
1986         space_map_truncate(vd->vdev_dtl_sm, tx);
1987         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1988         range_tree_vacate(rtsync, NULL, NULL);
1989
1990         range_tree_destroy(rtsync);
1991
1992         mutex_exit(&rtlock);
1993         mutex_destroy(&rtlock);
1994
1995         /*
1996          * If the object for the space map has changed then dirty
1997          * the top level so that we update the config.
1998          */
1999         if (object != space_map_object(vd->vdev_dtl_sm)) {
2000                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2001                     "new object %llu", txg, spa_name(spa), object,
2002                     space_map_object(vd->vdev_dtl_sm));
2003                 vdev_config_dirty(vd->vdev_top);
2004         }
2005
2006         dmu_tx_commit(tx);
2007
2008         mutex_enter(&vd->vdev_dtl_lock);
2009         space_map_update(vd->vdev_dtl_sm);
2010         mutex_exit(&vd->vdev_dtl_lock);
2011 }
2012
2013 /*
2014  * Determine whether the specified vdev can be offlined/detached/removed
2015  * without losing data.
2016  */
2017 boolean_t
2018 vdev_dtl_required(vdev_t *vd)
2019 {
2020         spa_t *spa = vd->vdev_spa;
2021         vdev_t *tvd = vd->vdev_top;
2022         uint8_t cant_read = vd->vdev_cant_read;
2023         boolean_t required;
2024
2025         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2026
2027         if (vd == spa->spa_root_vdev || vd == tvd)
2028                 return (B_TRUE);
2029
2030         /*
2031          * Temporarily mark the device as unreadable, and then determine
2032          * whether this results in any DTL outages in the top-level vdev.
2033          * If not, we can safely offline/detach/remove the device.
2034          */
2035         vd->vdev_cant_read = B_TRUE;
2036         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2037         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2038         vd->vdev_cant_read = cant_read;
2039         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2040
2041         if (!required && zio_injection_enabled)
2042                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2043
2044         return (required);
2045 }
2046
2047 /*
2048  * Determine if resilver is needed, and if so the txg range.
2049  */
2050 boolean_t
2051 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2052 {
2053         boolean_t needed = B_FALSE;
2054         uint64_t thismin = UINT64_MAX;
2055         uint64_t thismax = 0;
2056         int c;
2057
2058         if (vd->vdev_children == 0) {
2059                 mutex_enter(&vd->vdev_dtl_lock);
2060                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2061                     vdev_writeable(vd)) {
2062
2063                         thismin = vdev_dtl_min(vd);
2064                         thismax = vdev_dtl_max(vd);
2065                         needed = B_TRUE;
2066                 }
2067                 mutex_exit(&vd->vdev_dtl_lock);
2068         } else {
2069                 for (c = 0; c < vd->vdev_children; c++) {
2070                         vdev_t *cvd = vd->vdev_child[c];
2071                         uint64_t cmin, cmax;
2072
2073                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2074                                 thismin = MIN(thismin, cmin);
2075                                 thismax = MAX(thismax, cmax);
2076                                 needed = B_TRUE;
2077                         }
2078                 }
2079         }
2080
2081         if (needed && minp) {
2082                 *minp = thismin;
2083                 *maxp = thismax;
2084         }
2085         return (needed);
2086 }
2087
2088 void
2089 vdev_load(vdev_t *vd)
2090 {
2091         int c;
2092
2093         /*
2094          * Recursively load all children.
2095          */
2096         for (c = 0; c < vd->vdev_children; c++)
2097                 vdev_load(vd->vdev_child[c]);
2098
2099         /*
2100          * If this is a top-level vdev, initialize its metaslabs.
2101          */
2102         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2103             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2104             vdev_metaslab_init(vd, 0) != 0))
2105                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2106                     VDEV_AUX_CORRUPT_DATA);
2107
2108         /*
2109          * If this is a leaf vdev, load its DTL.
2110          */
2111         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2112                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2113                     VDEV_AUX_CORRUPT_DATA);
2114 }
2115
2116 /*
2117  * The special vdev case is used for hot spares and l2cache devices.  Its
2118  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2119  * we make sure that we can open the underlying device, then try to read the
2120  * label, and make sure that the label is sane and that it hasn't been
2121  * repurposed to another pool.
2122  */
2123 int
2124 vdev_validate_aux(vdev_t *vd)
2125 {
2126         nvlist_t *label;
2127         uint64_t guid, version;
2128         uint64_t state;
2129
2130         if (!vdev_readable(vd))
2131                 return (0);
2132
2133         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2134                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2135                     VDEV_AUX_CORRUPT_DATA);
2136                 return (-1);
2137         }
2138
2139         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2140             !SPA_VERSION_IS_SUPPORTED(version) ||
2141             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2142             guid != vd->vdev_guid ||
2143             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2144                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2145                     VDEV_AUX_CORRUPT_DATA);
2146                 nvlist_free(label);
2147                 return (-1);
2148         }
2149
2150         /*
2151          * We don't actually check the pool state here.  If it's in fact in
2152          * use by another pool, we update this fact on the fly when requested.
2153          */
2154         nvlist_free(label);
2155         return (0);
2156 }
2157
2158 void
2159 vdev_remove(vdev_t *vd, uint64_t txg)
2160 {
2161         spa_t *spa = vd->vdev_spa;
2162         objset_t *mos = spa->spa_meta_objset;
2163         dmu_tx_t *tx;
2164         int m, i;
2165
2166         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2167
2168         if (vd->vdev_ms != NULL) {
2169                 metaslab_group_t *mg = vd->vdev_mg;
2170
2171                 metaslab_group_histogram_verify(mg);
2172                 metaslab_class_histogram_verify(mg->mg_class);
2173
2174                 for (m = 0; m < vd->vdev_ms_count; m++) {
2175                         metaslab_t *msp = vd->vdev_ms[m];
2176
2177                         if (msp == NULL || msp->ms_sm == NULL)
2178                                 continue;
2179
2180                         mutex_enter(&msp->ms_lock);
2181                         /*
2182                          * If the metaslab was not loaded when the vdev
2183                          * was removed then the histogram accounting may
2184                          * not be accurate. Update the histogram information
2185                          * here so that we ensure that the metaslab group
2186                          * and metaslab class are up-to-date.
2187                          */
2188                         metaslab_group_histogram_remove(mg, msp);
2189
2190                         VERIFY0(space_map_allocated(msp->ms_sm));
2191                         space_map_free(msp->ms_sm, tx);
2192                         space_map_close(msp->ms_sm);
2193                         msp->ms_sm = NULL;
2194                         mutex_exit(&msp->ms_lock);
2195                 }
2196
2197                 metaslab_group_histogram_verify(mg);
2198                 metaslab_class_histogram_verify(mg->mg_class);
2199                 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2200                         ASSERT0(mg->mg_histogram[i]);
2201
2202         }
2203
2204         if (vd->vdev_ms_array) {
2205                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2206                 vd->vdev_ms_array = 0;
2207         }
2208         dmu_tx_commit(tx);
2209 }
2210
2211 void
2212 vdev_sync_done(vdev_t *vd, uint64_t txg)
2213 {
2214         metaslab_t *msp;
2215         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2216
2217         ASSERT(!vd->vdev_ishole);
2218
2219         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2220                 metaslab_sync_done(msp, txg);
2221
2222         if (reassess)
2223                 metaslab_sync_reassess(vd->vdev_mg);
2224 }
2225
2226 void
2227 vdev_sync(vdev_t *vd, uint64_t txg)
2228 {
2229         spa_t *spa = vd->vdev_spa;
2230         vdev_t *lvd;
2231         metaslab_t *msp;
2232         dmu_tx_t *tx;
2233
2234         ASSERT(!vd->vdev_ishole);
2235
2236         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2237                 ASSERT(vd == vd->vdev_top);
2238                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2239                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2240                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2241                 ASSERT(vd->vdev_ms_array != 0);
2242                 vdev_config_dirty(vd);
2243                 dmu_tx_commit(tx);
2244         }
2245
2246         /*
2247          * Remove the metadata associated with this vdev once it's empty.
2248          */
2249         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2250                 vdev_remove(vd, txg);
2251
2252         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2253                 metaslab_sync(msp, txg);
2254                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2255         }
2256
2257         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2258                 vdev_dtl_sync(lvd, txg);
2259
2260         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2261 }
2262
2263 uint64_t
2264 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2265 {
2266         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2267 }
2268
2269 /*
2270  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2271  * not be opened, and no I/O is attempted.
2272  */
2273 int
2274 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2275 {
2276         vdev_t *vd, *tvd;
2277
2278         spa_vdev_state_enter(spa, SCL_NONE);
2279
2280         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2281                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2282
2283         if (!vd->vdev_ops->vdev_op_leaf)
2284                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2285
2286         tvd = vd->vdev_top;
2287
2288         /*
2289          * We don't directly use the aux state here, but if we do a
2290          * vdev_reopen(), we need this value to be present to remember why we
2291          * were faulted.
2292          */
2293         vd->vdev_label_aux = aux;
2294
2295         /*
2296          * Faulted state takes precedence over degraded.
2297          */
2298         vd->vdev_delayed_close = B_FALSE;
2299         vd->vdev_faulted = 1ULL;
2300         vd->vdev_degraded = 0ULL;
2301         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2302
2303         /*
2304          * If this device has the only valid copy of the data, then
2305          * back off and simply mark the vdev as degraded instead.
2306          */
2307         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2308                 vd->vdev_degraded = 1ULL;
2309                 vd->vdev_faulted = 0ULL;
2310
2311                 /*
2312                  * If we reopen the device and it's not dead, only then do we
2313                  * mark it degraded.
2314                  */
2315                 vdev_reopen(tvd);
2316
2317                 if (vdev_readable(vd))
2318                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2319         }
2320
2321         return (spa_vdev_state_exit(spa, vd, 0));
2322 }
2323
2324 /*
2325  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2326  * user that something is wrong.  The vdev continues to operate as normal as far
2327  * as I/O is concerned.
2328  */
2329 int
2330 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2331 {
2332         vdev_t *vd;
2333
2334         spa_vdev_state_enter(spa, SCL_NONE);
2335
2336         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2337                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2338
2339         if (!vd->vdev_ops->vdev_op_leaf)
2340                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2341
2342         /*
2343          * If the vdev is already faulted, then don't do anything.
2344          */
2345         if (vd->vdev_faulted || vd->vdev_degraded)
2346                 return (spa_vdev_state_exit(spa, NULL, 0));
2347
2348         vd->vdev_degraded = 1ULL;
2349         if (!vdev_is_dead(vd))
2350                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2351                     aux);
2352
2353         return (spa_vdev_state_exit(spa, vd, 0));
2354 }
2355
2356 /*
2357  * Online the given vdev.
2358  *
2359  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2360  * spare device should be detached when the device finishes resilvering.
2361  * Second, the online should be treated like a 'test' online case, so no FMA
2362  * events are generated if the device fails to open.
2363  */
2364 int
2365 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2366 {
2367         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2368
2369         spa_vdev_state_enter(spa, SCL_NONE);
2370
2371         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2372                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2373
2374         if (!vd->vdev_ops->vdev_op_leaf)
2375                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2376
2377         tvd = vd->vdev_top;
2378         vd->vdev_offline = B_FALSE;
2379         vd->vdev_tmpoffline = B_FALSE;
2380         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2381         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2382
2383         /* XXX - L2ARC 1.0 does not support expansion */
2384         if (!vd->vdev_aux) {
2385                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2386                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2387         }
2388
2389         vdev_reopen(tvd);
2390         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2391
2392         if (!vd->vdev_aux) {
2393                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2394                         pvd->vdev_expanding = B_FALSE;
2395         }
2396
2397         if (newstate)
2398                 *newstate = vd->vdev_state;
2399         if ((flags & ZFS_ONLINE_UNSPARE) &&
2400             !vdev_is_dead(vd) && vd->vdev_parent &&
2401             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2402             vd->vdev_parent->vdev_child[0] == vd)
2403                 vd->vdev_unspare = B_TRUE;
2404
2405         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2406
2407                 /* XXX - L2ARC 1.0 does not support expansion */
2408                 if (vd->vdev_aux)
2409                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2410                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2411         }
2412         return (spa_vdev_state_exit(spa, vd, 0));
2413 }
2414
2415 static int
2416 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2417 {
2418         vdev_t *vd, *tvd;
2419         int error = 0;
2420         uint64_t generation;
2421         metaslab_group_t *mg;
2422
2423 top:
2424         spa_vdev_state_enter(spa, SCL_ALLOC);
2425
2426         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2427                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2428
2429         if (!vd->vdev_ops->vdev_op_leaf)
2430                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2431
2432         tvd = vd->vdev_top;
2433         mg = tvd->vdev_mg;
2434         generation = spa->spa_config_generation + 1;
2435
2436         /*
2437          * If the device isn't already offline, try to offline it.
2438          */
2439         if (!vd->vdev_offline) {
2440                 /*
2441                  * If this device has the only valid copy of some data,
2442                  * don't allow it to be offlined. Log devices are always
2443                  * expendable.
2444                  */
2445                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2446                     vdev_dtl_required(vd))
2447                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2448
2449                 /*
2450                  * If the top-level is a slog and it has had allocations
2451                  * then proceed.  We check that the vdev's metaslab group
2452                  * is not NULL since it's possible that we may have just
2453                  * added this vdev but not yet initialized its metaslabs.
2454                  */
2455                 if (tvd->vdev_islog && mg != NULL) {
2456                         /*
2457                          * Prevent any future allocations.
2458                          */
2459                         metaslab_group_passivate(mg);
2460                         (void) spa_vdev_state_exit(spa, vd, 0);
2461
2462                         error = spa_offline_log(spa);
2463
2464                         spa_vdev_state_enter(spa, SCL_ALLOC);
2465
2466                         /*
2467                          * Check to see if the config has changed.
2468                          */
2469                         if (error || generation != spa->spa_config_generation) {
2470                                 metaslab_group_activate(mg);
2471                                 if (error)
2472                                         return (spa_vdev_state_exit(spa,
2473                                             vd, error));
2474                                 (void) spa_vdev_state_exit(spa, vd, 0);
2475                                 goto top;
2476                         }
2477                         ASSERT0(tvd->vdev_stat.vs_alloc);
2478                 }
2479
2480                 /*
2481                  * Offline this device and reopen its top-level vdev.
2482                  * If the top-level vdev is a log device then just offline
2483                  * it. Otherwise, if this action results in the top-level
2484                  * vdev becoming unusable, undo it and fail the request.
2485                  */
2486                 vd->vdev_offline = B_TRUE;
2487                 vdev_reopen(tvd);
2488
2489                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2490                     vdev_is_dead(tvd)) {
2491                         vd->vdev_offline = B_FALSE;
2492                         vdev_reopen(tvd);
2493                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2494                 }
2495
2496                 /*
2497                  * Add the device back into the metaslab rotor so that
2498                  * once we online the device it's open for business.
2499                  */
2500                 if (tvd->vdev_islog && mg != NULL)
2501                         metaslab_group_activate(mg);
2502         }
2503
2504         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2505
2506         return (spa_vdev_state_exit(spa, vd, 0));
2507 }
2508
2509 int
2510 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2511 {
2512         int error;
2513
2514         mutex_enter(&spa->spa_vdev_top_lock);
2515         error = vdev_offline_locked(spa, guid, flags);
2516         mutex_exit(&spa->spa_vdev_top_lock);
2517
2518         return (error);
2519 }
2520
2521 /*
2522  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2523  * vdev_offline(), we assume the spa config is locked.  We also clear all
2524  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2525  */
2526 void
2527 vdev_clear(spa_t *spa, vdev_t *vd)
2528 {
2529         vdev_t *rvd = spa->spa_root_vdev;
2530         int c;
2531
2532         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2533
2534         if (vd == NULL)
2535                 vd = rvd;
2536
2537         vd->vdev_stat.vs_read_errors = 0;
2538         vd->vdev_stat.vs_write_errors = 0;
2539         vd->vdev_stat.vs_checksum_errors = 0;
2540
2541         for (c = 0; c < vd->vdev_children; c++)
2542                 vdev_clear(spa, vd->vdev_child[c]);
2543
2544         /*
2545          * If we're in the FAULTED state or have experienced failed I/O, then
2546          * clear the persistent state and attempt to reopen the device.  We
2547          * also mark the vdev config dirty, so that the new faulted state is
2548          * written out to disk.
2549          */
2550         if (vd->vdev_faulted || vd->vdev_degraded ||
2551             !vdev_readable(vd) || !vdev_writeable(vd)) {
2552
2553                 /*
2554                  * When reopening in reponse to a clear event, it may be due to
2555                  * a fmadm repair request.  In this case, if the device is
2556                  * still broken, we want to still post the ereport again.
2557                  */
2558                 vd->vdev_forcefault = B_TRUE;
2559
2560                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2561                 vd->vdev_cant_read = B_FALSE;
2562                 vd->vdev_cant_write = B_FALSE;
2563
2564                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2565
2566                 vd->vdev_forcefault = B_FALSE;
2567
2568                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2569                         vdev_state_dirty(vd->vdev_top);
2570
2571                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2572                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2573
2574                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2575         }
2576
2577         /*
2578          * When clearing a FMA-diagnosed fault, we always want to
2579          * unspare the device, as we assume that the original spare was
2580          * done in response to the FMA fault.
2581          */
2582         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2583             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2584             vd->vdev_parent->vdev_child[0] == vd)
2585                 vd->vdev_unspare = B_TRUE;
2586 }
2587
2588 boolean_t
2589 vdev_is_dead(vdev_t *vd)
2590 {
2591         /*
2592          * Holes and missing devices are always considered "dead".
2593          * This simplifies the code since we don't have to check for
2594          * these types of devices in the various code paths.
2595          * Instead we rely on the fact that we skip over dead devices
2596          * before issuing I/O to them.
2597          */
2598         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2599             vd->vdev_ops == &vdev_missing_ops);
2600 }
2601
2602 boolean_t
2603 vdev_readable(vdev_t *vd)
2604 {
2605         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2606 }
2607
2608 boolean_t
2609 vdev_writeable(vdev_t *vd)
2610 {
2611         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2612 }
2613
2614 boolean_t
2615 vdev_allocatable(vdev_t *vd)
2616 {
2617         uint64_t state = vd->vdev_state;
2618
2619         /*
2620          * We currently allow allocations from vdevs which may be in the
2621          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2622          * fails to reopen then we'll catch it later when we're holding
2623          * the proper locks.  Note that we have to get the vdev state
2624          * in a local variable because although it changes atomically,
2625          * we're asking two separate questions about it.
2626          */
2627         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2628             !vd->vdev_cant_write && !vd->vdev_ishole);
2629 }
2630
2631 boolean_t
2632 vdev_accessible(vdev_t *vd, zio_t *zio)
2633 {
2634         ASSERT(zio->io_vd == vd);
2635
2636         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2637                 return (B_FALSE);
2638
2639         if (zio->io_type == ZIO_TYPE_READ)
2640                 return (!vd->vdev_cant_read);
2641
2642         if (zio->io_type == ZIO_TYPE_WRITE)
2643                 return (!vd->vdev_cant_write);
2644
2645         return (B_TRUE);
2646 }
2647
2648 /*
2649  * Get statistics for the given vdev.
2650  */
2651 void
2652 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2653 {
2654         spa_t *spa = vd->vdev_spa;
2655         vdev_t *rvd = spa->spa_root_vdev;
2656         int c, t;
2657
2658         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2659
2660         mutex_enter(&vd->vdev_stat_lock);
2661         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2662         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2663         vs->vs_state = vd->vdev_state;
2664         vs->vs_rsize = vdev_get_min_asize(vd);
2665         if (vd->vdev_ops->vdev_op_leaf)
2666                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2667         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2668         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2669                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2670         }
2671
2672         /*
2673          * If we're getting stats on the root vdev, aggregate the I/O counts
2674          * over all top-level vdevs (i.e. the direct children of the root).
2675          */
2676         if (vd == rvd) {
2677                 for (c = 0; c < rvd->vdev_children; c++) {
2678                         vdev_t *cvd = rvd->vdev_child[c];
2679                         vdev_stat_t *cvs = &cvd->vdev_stat;
2680
2681                         for (t = 0; t < ZIO_TYPES; t++) {
2682                                 vs->vs_ops[t] += cvs->vs_ops[t];
2683                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2684                         }
2685                         cvs->vs_scan_removing = cvd->vdev_removing;
2686                 }
2687         }
2688         mutex_exit(&vd->vdev_stat_lock);
2689 }
2690
2691 void
2692 vdev_clear_stats(vdev_t *vd)
2693 {
2694         mutex_enter(&vd->vdev_stat_lock);
2695         vd->vdev_stat.vs_space = 0;
2696         vd->vdev_stat.vs_dspace = 0;
2697         vd->vdev_stat.vs_alloc = 0;
2698         mutex_exit(&vd->vdev_stat_lock);
2699 }
2700
2701 void
2702 vdev_scan_stat_init(vdev_t *vd)
2703 {
2704         vdev_stat_t *vs = &vd->vdev_stat;
2705         int c;
2706
2707         for (c = 0; c < vd->vdev_children; c++)
2708                 vdev_scan_stat_init(vd->vdev_child[c]);
2709
2710         mutex_enter(&vd->vdev_stat_lock);
2711         vs->vs_scan_processed = 0;
2712         mutex_exit(&vd->vdev_stat_lock);
2713 }
2714
2715 void
2716 vdev_stat_update(zio_t *zio, uint64_t psize)
2717 {
2718         spa_t *spa = zio->io_spa;
2719         vdev_t *rvd = spa->spa_root_vdev;
2720         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2721         vdev_t *pvd;
2722         uint64_t txg = zio->io_txg;
2723         vdev_stat_t *vs = &vd->vdev_stat;
2724         zio_type_t type = zio->io_type;
2725         int flags = zio->io_flags;
2726
2727         /*
2728          * If this i/o is a gang leader, it didn't do any actual work.
2729          */
2730         if (zio->io_gang_tree)
2731                 return;
2732
2733         if (zio->io_error == 0) {
2734                 /*
2735                  * If this is a root i/o, don't count it -- we've already
2736                  * counted the top-level vdevs, and vdev_get_stats() will
2737                  * aggregate them when asked.  This reduces contention on
2738                  * the root vdev_stat_lock and implicitly handles blocks
2739                  * that compress away to holes, for which there is no i/o.
2740                  * (Holes never create vdev children, so all the counters
2741                  * remain zero, which is what we want.)
2742                  *
2743                  * Note: this only applies to successful i/o (io_error == 0)
2744                  * because unlike i/o counts, errors are not additive.
2745                  * When reading a ditto block, for example, failure of
2746                  * one top-level vdev does not imply a root-level error.
2747                  */
2748                 if (vd == rvd)
2749                         return;
2750
2751                 ASSERT(vd == zio->io_vd);
2752
2753                 if (flags & ZIO_FLAG_IO_BYPASS)
2754                         return;
2755
2756                 mutex_enter(&vd->vdev_stat_lock);
2757
2758                 if (flags & ZIO_FLAG_IO_REPAIR) {
2759                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2760                                 dsl_scan_phys_t *scn_phys =
2761                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2762                                 uint64_t *processed = &scn_phys->scn_processed;
2763
2764                                 /* XXX cleanup? */
2765                                 if (vd->vdev_ops->vdev_op_leaf)
2766                                         atomic_add_64(processed, psize);
2767                                 vs->vs_scan_processed += psize;
2768                         }
2769
2770                         if (flags & ZIO_FLAG_SELF_HEAL)
2771                                 vs->vs_self_healed += psize;
2772                 }
2773
2774                 vs->vs_ops[type]++;
2775                 vs->vs_bytes[type] += psize;
2776
2777                 mutex_exit(&vd->vdev_stat_lock);
2778                 return;
2779         }
2780
2781         if (flags & ZIO_FLAG_SPECULATIVE)
2782                 return;
2783
2784         /*
2785          * If this is an I/O error that is going to be retried, then ignore the
2786          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2787          * hard errors, when in reality they can happen for any number of
2788          * innocuous reasons (bus resets, MPxIO link failure, etc).
2789          */
2790         if (zio->io_error == EIO &&
2791             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2792                 return;
2793
2794         /*
2795          * Intent logs writes won't propagate their error to the root
2796          * I/O so don't mark these types of failures as pool-level
2797          * errors.
2798          */
2799         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2800                 return;
2801
2802         mutex_enter(&vd->vdev_stat_lock);
2803         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2804                 if (zio->io_error == ECKSUM)
2805                         vs->vs_checksum_errors++;
2806                 else
2807                         vs->vs_read_errors++;
2808         }
2809         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2810                 vs->vs_write_errors++;
2811         mutex_exit(&vd->vdev_stat_lock);
2812
2813         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2814             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2815             (flags & ZIO_FLAG_SCAN_THREAD) ||
2816             spa->spa_claiming)) {
2817                 /*
2818                  * This is either a normal write (not a repair), or it's
2819                  * a repair induced by the scrub thread, or it's a repair
2820                  * made by zil_claim() during spa_load() in the first txg.
2821                  * In the normal case, we commit the DTL change in the same
2822                  * txg as the block was born.  In the scrub-induced repair
2823                  * case, we know that scrubs run in first-pass syncing context,
2824                  * so we commit the DTL change in spa_syncing_txg(spa).
2825                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2826                  *
2827                  * We currently do not make DTL entries for failed spontaneous
2828                  * self-healing writes triggered by normal (non-scrubbing)
2829                  * reads, because we have no transactional context in which to
2830                  * do so -- and it's not clear that it'd be desirable anyway.
2831                  */
2832                 if (vd->vdev_ops->vdev_op_leaf) {
2833                         uint64_t commit_txg = txg;
2834                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2835                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2836                                 ASSERT(spa_sync_pass(spa) == 1);
2837                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2838                                 commit_txg = spa_syncing_txg(spa);
2839                         } else if (spa->spa_claiming) {
2840                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2841                                 commit_txg = spa_first_txg(spa);
2842                         }
2843                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2844                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2845                                 return;
2846                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2847                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2848                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2849                 }
2850                 if (vd != rvd)
2851                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2852         }
2853 }
2854
2855 /*
2856  * Update the in-core space usage stats for this vdev, its metaslab class,
2857  * and the root vdev.
2858  */
2859 void
2860 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2861     int64_t space_delta)
2862 {
2863         int64_t dspace_delta = space_delta;
2864         spa_t *spa = vd->vdev_spa;
2865         vdev_t *rvd = spa->spa_root_vdev;
2866         metaslab_group_t *mg = vd->vdev_mg;
2867         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2868
2869         ASSERT(vd == vd->vdev_top);
2870
2871         /*
2872          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2873          * factor.  We must calculate this here and not at the root vdev
2874          * because the root vdev's psize-to-asize is simply the max of its
2875          * childrens', thus not accurate enough for us.
2876          */
2877         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2878         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2879         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2880             vd->vdev_deflate_ratio;
2881
2882         mutex_enter(&vd->vdev_stat_lock);
2883         vd->vdev_stat.vs_alloc += alloc_delta;
2884         vd->vdev_stat.vs_space += space_delta;
2885         vd->vdev_stat.vs_dspace += dspace_delta;
2886         mutex_exit(&vd->vdev_stat_lock);
2887
2888         if (mc == spa_normal_class(spa)) {
2889                 mutex_enter(&rvd->vdev_stat_lock);
2890                 rvd->vdev_stat.vs_alloc += alloc_delta;
2891                 rvd->vdev_stat.vs_space += space_delta;
2892                 rvd->vdev_stat.vs_dspace += dspace_delta;
2893                 mutex_exit(&rvd->vdev_stat_lock);
2894         }
2895
2896         if (mc != NULL) {
2897                 ASSERT(rvd == vd->vdev_parent);
2898                 ASSERT(vd->vdev_ms_count != 0);
2899
2900                 metaslab_class_space_update(mc,
2901                     alloc_delta, defer_delta, space_delta, dspace_delta);
2902         }
2903 }
2904
2905 /*
2906  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2907  * so that it will be written out next time the vdev configuration is synced.
2908  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2909  */
2910 void
2911 vdev_config_dirty(vdev_t *vd)
2912 {
2913         spa_t *spa = vd->vdev_spa;
2914         vdev_t *rvd = spa->spa_root_vdev;
2915         int c;
2916
2917         ASSERT(spa_writeable(spa));
2918
2919         /*
2920          * If this is an aux vdev (as with l2cache and spare devices), then we
2921          * update the vdev config manually and set the sync flag.
2922          */
2923         if (vd->vdev_aux != NULL) {
2924                 spa_aux_vdev_t *sav = vd->vdev_aux;
2925                 nvlist_t **aux;
2926                 uint_t naux;
2927
2928                 for (c = 0; c < sav->sav_count; c++) {
2929                         if (sav->sav_vdevs[c] == vd)
2930                                 break;
2931                 }
2932
2933                 if (c == sav->sav_count) {
2934                         /*
2935                          * We're being removed.  There's nothing more to do.
2936                          */
2937                         ASSERT(sav->sav_sync == B_TRUE);
2938                         return;
2939                 }
2940
2941                 sav->sav_sync = B_TRUE;
2942
2943                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2944                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2945                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2946                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2947                 }
2948
2949                 ASSERT(c < naux);
2950
2951                 /*
2952                  * Setting the nvlist in the middle if the array is a little
2953                  * sketchy, but it will work.
2954                  */
2955                 nvlist_free(aux[c]);
2956                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2957
2958                 return;
2959         }
2960
2961         /*
2962          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2963          * must either hold SCL_CONFIG as writer, or must be the sync thread
2964          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2965          * so this is sufficient to ensure mutual exclusion.
2966          */
2967         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2968             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2969             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2970
2971         if (vd == rvd) {
2972                 for (c = 0; c < rvd->vdev_children; c++)
2973                         vdev_config_dirty(rvd->vdev_child[c]);
2974         } else {
2975                 ASSERT(vd == vd->vdev_top);
2976
2977                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2978                     !vd->vdev_ishole)
2979                         list_insert_head(&spa->spa_config_dirty_list, vd);
2980         }
2981 }
2982
2983 void
2984 vdev_config_clean(vdev_t *vd)
2985 {
2986         spa_t *spa = vd->vdev_spa;
2987
2988         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2989             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2990             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2991
2992         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2993         list_remove(&spa->spa_config_dirty_list, vd);
2994 }
2995
2996 /*
2997  * Mark a top-level vdev's state as dirty, so that the next pass of
2998  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2999  * the state changes from larger config changes because they require
3000  * much less locking, and are often needed for administrative actions.
3001  */
3002 void
3003 vdev_state_dirty(vdev_t *vd)
3004 {
3005         spa_t *spa = vd->vdev_spa;
3006
3007         ASSERT(spa_writeable(spa));
3008         ASSERT(vd == vd->vdev_top);
3009
3010         /*
3011          * The state list is protected by the SCL_STATE lock.  The caller
3012          * must either hold SCL_STATE as writer, or must be the sync thread
3013          * (which holds SCL_STATE as reader).  There's only one sync thread,
3014          * so this is sufficient to ensure mutual exclusion.
3015          */
3016         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3017             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3018             spa_config_held(spa, SCL_STATE, RW_READER)));
3019
3020         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3021                 list_insert_head(&spa->spa_state_dirty_list, vd);
3022 }
3023
3024 void
3025 vdev_state_clean(vdev_t *vd)
3026 {
3027         spa_t *spa = vd->vdev_spa;
3028
3029         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3030             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3031             spa_config_held(spa, SCL_STATE, RW_READER)));
3032
3033         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3034         list_remove(&spa->spa_state_dirty_list, vd);
3035 }
3036
3037 /*
3038  * Propagate vdev state up from children to parent.
3039  */
3040 void
3041 vdev_propagate_state(vdev_t *vd)
3042 {
3043         spa_t *spa = vd->vdev_spa;
3044         vdev_t *rvd = spa->spa_root_vdev;
3045         int degraded = 0, faulted = 0;
3046         int corrupted = 0;
3047         vdev_t *child;
3048         int c;
3049
3050         if (vd->vdev_children > 0) {
3051                 for (c = 0; c < vd->vdev_children; c++) {
3052                         child = vd->vdev_child[c];
3053
3054                         /*
3055                          * Don't factor holes into the decision.
3056                          */
3057                         if (child->vdev_ishole)
3058                                 continue;
3059
3060                         if (!vdev_readable(child) ||
3061                             (!vdev_writeable(child) && spa_writeable(spa))) {
3062                                 /*
3063                                  * Root special: if there is a top-level log
3064                                  * device, treat the root vdev as if it were
3065                                  * degraded.
3066                                  */
3067                                 if (child->vdev_islog && vd == rvd)
3068                                         degraded++;
3069                                 else
3070                                         faulted++;
3071                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3072                                 degraded++;
3073                         }
3074
3075                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3076                                 corrupted++;
3077                 }
3078
3079                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3080
3081                 /*
3082                  * Root special: if there is a top-level vdev that cannot be
3083                  * opened due to corrupted metadata, then propagate the root
3084                  * vdev's aux state as 'corrupt' rather than 'insufficient
3085                  * replicas'.
3086                  */
3087                 if (corrupted && vd == rvd &&
3088                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3089                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3090                             VDEV_AUX_CORRUPT_DATA);
3091         }
3092
3093         if (vd->vdev_parent)
3094                 vdev_propagate_state(vd->vdev_parent);
3095 }
3096
3097 /*
3098  * Set a vdev's state.  If this is during an open, we don't update the parent
3099  * state, because we're in the process of opening children depth-first.
3100  * Otherwise, we propagate the change to the parent.
3101  *
3102  * If this routine places a device in a faulted state, an appropriate ereport is
3103  * generated.
3104  */
3105 void
3106 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3107 {
3108         uint64_t save_state;
3109         spa_t *spa = vd->vdev_spa;
3110
3111         if (state == vd->vdev_state) {
3112                 vd->vdev_stat.vs_aux = aux;
3113                 return;
3114         }
3115
3116         save_state = vd->vdev_state;
3117
3118         vd->vdev_state = state;
3119         vd->vdev_stat.vs_aux = aux;
3120
3121         /*
3122          * If we are setting the vdev state to anything but an open state, then
3123          * always close the underlying device unless the device has requested
3124          * a delayed close (i.e. we're about to remove or fault the device).
3125          * Otherwise, we keep accessible but invalid devices open forever.
3126          * We don't call vdev_close() itself, because that implies some extra
3127          * checks (offline, etc) that we don't want here.  This is limited to
3128          * leaf devices, because otherwise closing the device will affect other
3129          * children.
3130          */
3131         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3132             vd->vdev_ops->vdev_op_leaf)
3133                 vd->vdev_ops->vdev_op_close(vd);
3134
3135         /*
3136          * If we have brought this vdev back into service, we need
3137          * to notify fmd so that it can gracefully repair any outstanding
3138          * cases due to a missing device.  We do this in all cases, even those
3139          * that probably don't correlate to a repaired fault.  This is sure to
3140          * catch all cases, and we let the zfs-retire agent sort it out.  If
3141          * this is a transient state it's OK, as the retire agent will
3142          * double-check the state of the vdev before repairing it.
3143          */
3144         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3145             vd->vdev_prevstate != state)
3146                 zfs_post_state_change(spa, vd);
3147
3148         if (vd->vdev_removed &&
3149             state == VDEV_STATE_CANT_OPEN &&
3150             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3151                 /*
3152                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3153                  * device was previously marked removed and someone attempted to
3154                  * reopen it.  If this failed due to a nonexistent device, then
3155                  * keep the device in the REMOVED state.  We also let this be if
3156                  * it is one of our special test online cases, which is only
3157                  * attempting to online the device and shouldn't generate an FMA
3158                  * fault.
3159                  */
3160                 vd->vdev_state = VDEV_STATE_REMOVED;
3161                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3162         } else if (state == VDEV_STATE_REMOVED) {
3163                 vd->vdev_removed = B_TRUE;
3164         } else if (state == VDEV_STATE_CANT_OPEN) {
3165                 /*
3166                  * If we fail to open a vdev during an import or recovery, we
3167                  * mark it as "not available", which signifies that it was
3168                  * never there to begin with.  Failure to open such a device
3169                  * is not considered an error.
3170                  */
3171                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3172                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3173                     vd->vdev_ops->vdev_op_leaf)
3174                         vd->vdev_not_present = 1;
3175
3176                 /*
3177                  * Post the appropriate ereport.  If the 'prevstate' field is
3178                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3179                  * that this is part of a vdev_reopen().  In this case, we don't
3180                  * want to post the ereport if the device was already in the
3181                  * CANT_OPEN state beforehand.
3182                  *
3183                  * If the 'checkremove' flag is set, then this is an attempt to
3184                  * online the device in response to an insertion event.  If we
3185                  * hit this case, then we have detected an insertion event for a
3186                  * faulted or offline device that wasn't in the removed state.
3187                  * In this scenario, we don't post an ereport because we are
3188                  * about to replace the device, or attempt an online with
3189                  * vdev_forcefault, which will generate the fault for us.
3190                  */
3191                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3192                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3193                     vd != spa->spa_root_vdev) {
3194                         const char *class;
3195
3196                         switch (aux) {
3197                         case VDEV_AUX_OPEN_FAILED:
3198                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3199                                 break;
3200                         case VDEV_AUX_CORRUPT_DATA:
3201                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3202                                 break;
3203                         case VDEV_AUX_NO_REPLICAS:
3204                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3205                                 break;
3206                         case VDEV_AUX_BAD_GUID_SUM:
3207                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3208                                 break;
3209                         case VDEV_AUX_TOO_SMALL:
3210                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3211                                 break;
3212                         case VDEV_AUX_BAD_LABEL:
3213                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3214                                 break;
3215                         default:
3216                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3217                         }
3218
3219                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3220                 }
3221
3222                 /* Erase any notion of persistent removed state */
3223                 vd->vdev_removed = B_FALSE;
3224         } else {
3225                 vd->vdev_removed = B_FALSE;
3226         }
3227
3228         if (!isopen && vd->vdev_parent)
3229                 vdev_propagate_state(vd->vdev_parent);
3230 }
3231
3232 /*
3233  * Check the vdev configuration to ensure that it's capable of supporting
3234  * a root pool.
3235  */
3236 boolean_t
3237 vdev_is_bootable(vdev_t *vd)
3238 {
3239 #if defined(__sun__) || defined(__sun)
3240         /*
3241          * Currently, we do not support RAID-Z or partial configuration.
3242          * In addition, only a single top-level vdev is allowed and none of the
3243          * leaves can be wholedisks.
3244          */
3245         int c;
3246
3247         if (!vd->vdev_ops->vdev_op_leaf) {
3248                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3249
3250                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3251                     vd->vdev_children > 1) {
3252                         return (B_FALSE);
3253                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3254                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3255                         return (B_FALSE);
3256                 }
3257         } else if (vd->vdev_wholedisk == 1) {
3258                 return (B_FALSE);
3259         }
3260
3261         for (c = 0; c < vd->vdev_children; c++) {
3262                 if (!vdev_is_bootable(vd->vdev_child[c]))
3263                         return (B_FALSE);
3264         }
3265 #endif /* __sun__ || __sun */
3266         return (B_TRUE);
3267 }
3268
3269 /*
3270  * Load the state from the original vdev tree (ovd) which
3271  * we've retrieved from the MOS config object. If the original
3272  * vdev was offline or faulted then we transfer that state to the
3273  * device in the current vdev tree (nvd).
3274  */
3275 void
3276 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3277 {
3278         int c;
3279
3280         ASSERT(nvd->vdev_top->vdev_islog);
3281         ASSERT(spa_config_held(nvd->vdev_spa,
3282             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3283         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3284
3285         for (c = 0; c < nvd->vdev_children; c++)
3286                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3287
3288         if (nvd->vdev_ops->vdev_op_leaf) {
3289                 /*
3290                  * Restore the persistent vdev state
3291                  */
3292                 nvd->vdev_offline = ovd->vdev_offline;
3293                 nvd->vdev_faulted = ovd->vdev_faulted;
3294                 nvd->vdev_degraded = ovd->vdev_degraded;
3295                 nvd->vdev_removed = ovd->vdev_removed;
3296         }
3297 }
3298
3299 /*
3300  * Determine if a log device has valid content.  If the vdev was
3301  * removed or faulted in the MOS config then we know that
3302  * the content on the log device has already been written to the pool.
3303  */
3304 boolean_t
3305 vdev_log_state_valid(vdev_t *vd)
3306 {
3307         int c;
3308
3309         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3310             !vd->vdev_removed)
3311                 return (B_TRUE);
3312
3313         for (c = 0; c < vd->vdev_children; c++)
3314                 if (vdev_log_state_valid(vd->vdev_child[c]))
3315                         return (B_TRUE);
3316
3317         return (B_FALSE);
3318 }
3319
3320 /*
3321  * Expand a vdev if possible.
3322  */
3323 void
3324 vdev_expand(vdev_t *vd, uint64_t txg)
3325 {
3326         ASSERT(vd->vdev_top == vd);
3327         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3328
3329         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3330                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3331                 vdev_config_dirty(vd);
3332         }
3333 }
3334
3335 /*
3336  * Split a vdev.
3337  */
3338 void
3339 vdev_split(vdev_t *vd)
3340 {
3341         vdev_t *cvd, *pvd = vd->vdev_parent;
3342
3343         vdev_remove_child(pvd, vd);
3344         vdev_compact_children(pvd);
3345
3346         cvd = pvd->vdev_child[0];
3347         if (pvd->vdev_children == 1) {
3348                 vdev_remove_parent(cvd);
3349                 cvd->vdev_splitting = B_TRUE;
3350         }
3351         vdev_propagate_state(cvd);
3352 }
3353
3354 void
3355 vdev_deadman(vdev_t *vd)
3356 {
3357         int c;
3358
3359         for (c = 0; c < vd->vdev_children; c++) {
3360                 vdev_t *cvd = vd->vdev_child[c];
3361
3362                 vdev_deadman(cvd);
3363         }
3364
3365         if (vd->vdev_ops->vdev_op_leaf) {
3366                 vdev_queue_t *vq = &vd->vdev_queue;
3367
3368                 mutex_enter(&vq->vq_lock);
3369                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3370                         spa_t *spa = vd->vdev_spa;
3371                         zio_t *fio;
3372                         uint64_t delta;
3373
3374                         /*
3375                          * Look at the head of all the pending queues,
3376                          * if any I/O has been outstanding for longer than
3377                          * the spa_deadman_synctime we log a zevent.
3378                          */
3379                         fio = avl_first(&vq->vq_active_tree);
3380                         delta = gethrtime() - fio->io_timestamp;
3381                         if (delta > spa_deadman_synctime(spa)) {
3382                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3383                                     "delta %lluns, last io %lluns",
3384                                     fio->io_timestamp, delta,
3385                                     vq->vq_io_complete_ts);
3386                                 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3387                                     spa, vd, fio, 0, 0);
3388                         }
3389                 }
3390                 mutex_exit(&vq->vq_lock);
3391         }
3392 }
3393
3394 #if defined(_KERNEL) && defined(HAVE_SPL)
3395 EXPORT_SYMBOL(vdev_fault);
3396 EXPORT_SYMBOL(vdev_degrade);
3397 EXPORT_SYMBOL(vdev_online);
3398 EXPORT_SYMBOL(vdev_offline);
3399 EXPORT_SYMBOL(vdev_clear);
3400
3401 module_param(metaslabs_per_vdev, int, 0644);
3402 MODULE_PARM_DESC(metaslabs_per_vdev,
3403         "Divide added vdev into approximately (but no more than) this number "
3404         "of metaslabs");
3405 #endif