dhcpcd: update README.DRAGONFLY
[dragonfly.git] / crypto / libressl / crypto / rsa / rsa_oaep.c
1 /* $OpenBSD: rsa_oaep.c,v 1.35 2022/02/20 19:16:34 tb Exp $ */
2 /*
3  * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer. 
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55
56 /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
57
58 /* See Victor Shoup, "OAEP reconsidered," Nov. 2000,
59  * <URL: http://www.shoup.net/papers/oaep.ps.Z>
60  * for problems with the security proof for the
61  * original OAEP scheme, which EME-OAEP is based on.
62  *
63  * A new proof can be found in E. Fujisaki, T. Okamoto,
64  * D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!",
65  * Dec. 2000, <URL: http://eprint.iacr.org/2000/061/>.
66  * The new proof has stronger requirements for the
67  * underlying permutation: "partial-one-wayness" instead
68  * of one-wayness.  For the RSA function, this is
69  * an equivalent notion.
70  */
71
72 #include <stdio.h>
73 #include <stdlib.h>
74 #include <string.h>
75
76 #include <openssl/bn.h>
77 #include <openssl/err.h>
78 #include <openssl/evp.h>
79 #include <openssl/rsa.h>
80 #include <openssl/sha.h>
81
82 #include "constant_time_locl.h"
83 #include "evp_locl.h"
84 #include "rsa_locl.h"
85
86 int
87 RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
88     const unsigned char *from, int flen, const unsigned char *param, int plen)
89 {
90         return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen, param,
91             plen, NULL, NULL);
92 }
93
94 int
95 RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
96     const unsigned char *from, int flen, const unsigned char *param, int plen,
97     const EVP_MD *md, const EVP_MD *mgf1md)
98 {
99         int i, emlen = tlen - 1;
100         unsigned char *db, *seed;
101         unsigned char *dbmask = NULL;
102         unsigned char seedmask[EVP_MAX_MD_SIZE];
103         int mdlen, dbmask_len = 0;
104         int rv = 0;
105
106         if (md == NULL)
107                 md = EVP_sha1();
108         if (mgf1md == NULL)
109                 mgf1md = md;
110
111         if ((mdlen = EVP_MD_size(md)) <= 0)
112                 goto err;
113
114         if (flen > emlen - 2 * mdlen - 1) {
115                 RSAerror(RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
116                 goto err;
117         }
118
119         if (emlen < 2 * mdlen + 1) {
120                 RSAerror(RSA_R_KEY_SIZE_TOO_SMALL);
121                 goto err;
122         }
123
124         to[0] = 0;
125         seed = to + 1;
126         db = to + mdlen + 1;
127
128         if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
129                 goto err;
130
131         memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
132         db[emlen - flen - mdlen - 1] = 0x01;
133         memcpy(db + emlen - flen - mdlen, from, flen);
134         arc4random_buf(seed, mdlen);
135
136         dbmask_len = emlen - mdlen;
137         if ((dbmask = malloc(dbmask_len)) == NULL) {
138                 RSAerror(ERR_R_MALLOC_FAILURE);
139                 goto err;
140         }
141
142         if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
143                 goto err;
144         for (i = 0; i < dbmask_len; i++)
145                 db[i] ^= dbmask[i];
146         if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
147                 goto err;
148         for (i = 0; i < mdlen; i++)
149                 seed[i] ^= seedmask[i];
150
151         rv = 1;
152
153  err:
154         explicit_bzero(seedmask, sizeof(seedmask));
155         freezero(dbmask, dbmask_len);
156
157         return rv;
158 }
159
160 int
161 RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
162     const unsigned char *from, int flen, int num, const unsigned char *param,
163     int plen)
164 {
165         return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
166             param, plen, NULL, NULL);
167 }
168
169 int
170 RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
171     const unsigned char *from, int flen, int num, const unsigned char *param,
172     int plen, const EVP_MD *md, const EVP_MD *mgf1md)
173 {
174         int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
175         unsigned int good = 0, found_one_byte, mask;
176         const unsigned char *maskedseed, *maskeddb;
177         unsigned char seed[EVP_MAX_MD_SIZE], phash[EVP_MAX_MD_SIZE];
178         unsigned char *db = NULL, *em = NULL;
179         int mdlen;
180
181         if (md == NULL)
182                 md = EVP_sha1();
183         if (mgf1md == NULL)
184                 mgf1md = md;
185
186         if ((mdlen = EVP_MD_size(md)) <= 0)
187                 return -1;
188
189         if (tlen <= 0 || flen <= 0)
190                 return -1;
191
192         /*
193          * |num| is the length of the modulus; |flen| is the length of the
194          * encoded message. Therefore, for any |from| that was obtained by
195          * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
196          * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective
197          * of the ciphertext, see PKCS #1 v2.2, section 7.1.2.
198          * This does not leak any side-channel information.
199          */
200         if (num < flen || num < 2 * mdlen + 2) {
201                 RSAerror(RSA_R_OAEP_DECODING_ERROR);
202                 return -1;
203         }
204
205         dblen = num - mdlen - 1;
206         if ((db = malloc(dblen)) == NULL) {
207                 RSAerror(ERR_R_MALLOC_FAILURE);
208                 goto cleanup;
209         }
210         if ((em = malloc(num)) == NULL) {
211                 RSAerror(ERR_R_MALLOC_FAILURE);
212                 goto cleanup;
213         }
214
215         /*
216          * Caller is encouraged to pass zero-padded message created with
217          * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
218          * bounds, it's impossible to have an invariant memory access pattern
219          * in case |from| was not zero-padded in advance.
220          */
221         for (from += flen, em += num, i = 0; i < num; i++) {
222                 mask = ~constant_time_is_zero(flen);
223                 flen -= 1 & mask;
224                 from -= 1 & mask;
225                 *--em = *from & mask;
226         }
227
228         /*
229          * The first byte must be zero, however we must not leak if this is
230          * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA
231          * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
232          */
233         good = constant_time_is_zero(em[0]);
234
235         maskedseed = em + 1;
236         maskeddb = em + 1 + mdlen;
237
238         if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
239                 goto cleanup;
240         for (i = 0; i < mdlen; i++)
241                 seed[i] ^= maskedseed[i];
242
243         if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
244                 goto cleanup;
245         for (i = 0; i < dblen; i++)
246                 db[i] ^= maskeddb[i];
247
248         if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
249                 goto cleanup;
250
251         good &= constant_time_is_zero(timingsafe_memcmp(db, phash, mdlen));
252
253         found_one_byte = 0;
254         for (i = mdlen; i < dblen; i++) {
255                 /*
256                  * Padding consists of a number of 0-bytes, followed by a 1.
257                  */
258                 unsigned int equals1 = constant_time_eq(db[i], 1);
259                 unsigned int equals0 = constant_time_is_zero(db[i]);
260
261                 one_index = constant_time_select_int(~found_one_byte & equals1,
262                     i, one_index);
263                 found_one_byte |= equals1;
264                 good &= (found_one_byte | equals0);
265         }
266
267         good &= found_one_byte;
268
269         /*
270          * At this point |good| is zero unless the plaintext was valid,
271          * so plaintext-awareness ensures timing side-channels are no longer a
272          * concern.
273          */
274         msg_index = one_index + 1;
275         mlen = dblen - msg_index;
276
277         /*
278          * For good measure, do this check in constant time as well.
279          */
280         good &= constant_time_ge(tlen, mlen);
281
282         /*
283          * Even though we can't fake result's length, we can pretend copying
284          * |tlen| bytes where |mlen| bytes would be real. The last |tlen| of
285          * |dblen| bytes are viewed as a circular buffer starting at |tlen|-|mlen'|,
286          * where |mlen'| is the "saturated" |mlen| value. Deducing information
287          * about failure or |mlen| would require an attacker to observe
288          * memory access patterns with byte granularity *as it occurs*. It
289          * should be noted that failure is indistinguishable from normal
290          * operation if |tlen| is fixed by protocol.
291          */
292         tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
293             dblen - mdlen - 1, tlen);
294         msg_index = constant_time_select_int(good, msg_index, dblen - tlen);
295         mlen = dblen - msg_index;
296         for (mask = good, i = 0; i < tlen; i++) {
297                 unsigned int equals = constant_time_eq(msg_index, dblen);
298
299                 msg_index -= tlen & equals;     /* rewind at EOF */
300                 mask &= ~equals;                /* mask = 0 at EOF */
301                 to[i] = constant_time_select_8(mask, db[msg_index++], to[i]);
302         }
303
304         /*
305          * To avoid chosen ciphertext attacks, the error message should not
306          * reveal which kind of decoding error happened.
307          */
308         RSAerror(RSA_R_OAEP_DECODING_ERROR);
309         err_clear_last_constant_time(1 & good);
310
311  cleanup:
312         explicit_bzero(seed, sizeof(seed));
313         freezero(db, dblen);
314         freezero(em, num);
315
316         return constant_time_select_int(good, mlen, -1);
317 }
318
319 int
320 PKCS1_MGF1(unsigned char *mask, long len, const unsigned char *seed,
321     long seedlen, const EVP_MD *dgst)
322 {
323         long i, outlen = 0;
324         unsigned char cnt[4];
325         EVP_MD_CTX c;
326         unsigned char md[EVP_MAX_MD_SIZE];
327         int mdlen;
328         int rv = -1;
329
330         EVP_MD_CTX_init(&c);
331         mdlen = EVP_MD_size(dgst);
332         if (mdlen < 0)
333                 goto err;
334         for (i = 0; outlen < len; i++) {
335                 cnt[0] = (unsigned char)((i >> 24) & 255);
336                 cnt[1] = (unsigned char)((i >> 16) & 255);
337                 cnt[2] = (unsigned char)((i >> 8)) & 255;
338                 cnt[3] = (unsigned char)(i & 255);
339                 if (!EVP_DigestInit_ex(&c, dgst, NULL) ||
340                     !EVP_DigestUpdate(&c, seed, seedlen) ||
341                     !EVP_DigestUpdate(&c, cnt, 4))
342                         goto err;
343                 if (outlen + mdlen <= len) {
344                         if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL))
345                                 goto err;
346                         outlen += mdlen;
347                 } else {
348                         if (!EVP_DigestFinal_ex(&c, md, NULL))
349                                 goto err;
350                         memcpy(mask + outlen, md, len - outlen);
351                         outlen = len;
352                 }
353         }
354         rv = 0;
355  err:
356         EVP_MD_CTX_cleanup(&c);
357         return rv;
358 }