inet6: only mark autoconf addresses tentative if detached
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
CommitLineData
d7f50089 1/*
d7f50089 2 * Copyright (c) 1991 Regents of the University of California.
d7f50089 3 * Copyright (c) 1994 John S. Dyson
d7f50089 4 * Copyright (c) 1994 David Greenman
48ffc236
JG
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
567a6398 9 * Copyright (c) 2011-2019 Matthew Dillon
d7f50089 10 * All rights reserved.
c8fe38ae
MD
11 *
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
15 *
d7f50089
YY
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
d7f50089
YY
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
c8fe38ae
MD
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
d7f50089 42 * SUCH DAMAGE.
d7f50089
YY
43 */
44/*
90244566 45 * Manage physical address maps for x86-64 systems.
9e24b495
MD
46 *
47 * Some notes:
48 * - The 'M'odified bit is only applicable to terminal PTEs.
49 *
50 * - The 'U'ser access bit can be set for higher-level PTEs as
51 * long as it isn't set for terminal PTEs for pages we don't
52 * want user access to.
c8fe38ae
MD
53 */
54
4a3a2ba2 55#include "opt_ddb.h"
c8fe38ae 56#include "opt_msgbuf.h"
d7f50089 57
c8fe38ae 58#include <sys/param.h>
d7f50089 59#include <sys/kernel.h>
d7f50089 60#include <sys/proc.h>
c8fe38ae
MD
61#include <sys/msgbuf.h>
62#include <sys/vmmeter.h>
63#include <sys/mman.h>
a86ce0cd 64#include <sys/systm.h>
d7f50089 65
c8fe38ae
MD
66#include <vm/vm.h>
67#include <vm/vm_param.h>
68#include <sys/sysctl.h>
69#include <sys/lock.h>
d7f50089 70#include <vm/vm_kern.h>
c8fe38ae
MD
71#include <vm/vm_page.h>
72#include <vm/vm_map.h>
d7f50089 73#include <vm/vm_object.h>
c8fe38ae 74#include <vm/vm_extern.h>
d7f50089 75#include <vm/vm_pageout.h>
c8fe38ae
MD
76#include <vm/vm_pager.h>
77#include <vm/vm_zone.h>
78
c8fe38ae 79#include <sys/thread2.h>
b12defdc
MD
80#include <sys/spinlock2.h>
81#include <vm/vm_page2.h>
d7f50089 82
c8fe38ae 83#include <machine/cputypes.h>
9e24b495 84#include <machine/cpu.h>
d7f50089 85#include <machine/md_var.h>
c8fe38ae
MD
86#include <machine/specialreg.h>
87#include <machine/smp.h>
88#include <machine_base/apic/apicreg.h>
d7f50089 89#include <machine/globaldata.h>
c8fe38ae
MD
90#include <machine/pmap.h>
91#include <machine/pmap_inval.h>
92
48ffc236
JG
93#include <ddb/ddb.h>
94
c8fe38ae 95#define PMAP_KEEP_PDIRS
c8fe38ae
MD
96
97#if defined(DIAGNOSTIC)
98#define PMAP_DIAGNOSTIC
99#endif
100
101#define MINPV 2048
102
701c977e
MD
103/*
104 * pmap debugging will report who owns a pv lock when blocking.
105 */
106#ifdef PMAP_DEBUG
107
6379cf29 108#define PMAP_DEBUG_DECL , const char *func, int lineno
701c977e
MD
109#define PMAP_DEBUG_ARGS , __func__, __LINE__
110#define PMAP_DEBUG_COPY , func, lineno
111
76f1911e 112#define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp \
701c977e
MD
113 PMAP_DEBUG_ARGS)
114#define pv_lock(pv) _pv_lock(pv \
115 PMAP_DEBUG_ARGS)
116#define pv_hold_try(pv) _pv_hold_try(pv \
117 PMAP_DEBUG_ARGS)
118#define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
119 PMAP_DEBUG_ARGS)
120
e989b548
MD
121#define pv_free(pv, pvp) _pv_free(pv, pvp PMAP_DEBUG_ARGS)
122
701c977e
MD
123#else
124
125#define PMAP_DEBUG_DECL
126#define PMAP_DEBUG_ARGS
127#define PMAP_DEBUG_COPY
128
567a6398 129#define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp)
701c977e
MD
130#define pv_lock(pv) _pv_lock(pv)
131#define pv_hold_try(pv) _pv_hold_try(pv)
132#define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
e989b548 133#define pv_free(pv, pvp) _pv_free(pv, pvp)
701c977e
MD
134
135#endif
136
c8fe38ae
MD
137/*
138 * Get PDEs and PTEs for user/kernel address space
139 */
6379cf29 140#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
c8fe38ae 141
6379cf29
AL
142#define pmap_pde_v(pmap, pde) \
143 ((*(pd_entry_t *)pde & pmap->pmap_bits[PG_V_IDX]) != 0)
567a6398
MD
144#define pmap_pte_w(pmap, pte) \
145 ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
146#define pmap_pte_m(pmap, pte) \
147 ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
148#define pmap_pte_u(pmap, pte) \
149 ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
150#define pmap_pte_v(pmap, pte) \
151 ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
c8fe38ae 152
c8fe38ae
MD
153/*
154 * Given a map and a machine independent protection code,
155 * convert to a vax protection code.
156 */
157#define pte_prot(m, p) \
a86ce0cd 158 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
3e925ec2 159static uint64_t protection_codes[PROTECTION_CODES_SIZE];
d7f50089 160
0ad80e33
MD
161/*
162 * Backing scan macros. Note that in the use case 'ipte' is only a tentitive
163 * value and must be validated by a pmap_inval_smp_cmpset*() or equivalent
164 * function.
165 *
166 * NOTE: cpu_ccfence() is required to prevent excessive optmization of
167 * of the (ipte) variable.
c2830aa6
MD
168 *
169 * NOTE: We don't bother locking the backing object if it isn't mapped
170 * to anything (backing_list is empty).
171 *
172 * NOTE: For now guarantee an interlock via iobj->backing_lk if the
173 * object exists and do not shortcut the lock by checking to see
174 * if the list is empty first.
0ad80e33 175 */
567a6398
MD
176#define PMAP_PAGE_BACKING_SCAN(m, match_pmap, ipmap, iptep, ipte, iva) \
177 if (m->object) { \
178 vm_object_t iobj = m->object; \
179 vm_map_backing_t iba, next_ba; \
180 struct pmap *ipmap; \
181 pt_entry_t ipte; \
182 pt_entry_t *iptep; \
183 vm_offset_t iva; \
184 vm_pindex_t ipindex_start; \
185 vm_pindex_t ipindex_end; \
186 \
187 lockmgr(&iobj->backing_lk, LK_SHARED); \
188 next_ba = TAILQ_FIRST(&iobj->backing_list); \
189 while ((iba = next_ba) != NULL) { \
190 next_ba = TAILQ_NEXT(iba, entry); \
191 ipmap = iba->pmap; \
192 if (match_pmap && ipmap != match_pmap) \
193 continue; \
194 ipindex_start = iba->offset >> PAGE_SHIFT; \
195 ipindex_end = ipindex_start + \
196 ((iba->end - iba->start) >> PAGE_SHIFT); \
197 if (m->pindex < ipindex_start || \
198 m->pindex >= ipindex_end) { \
199 continue; \
200 } \
201 iva = iba->start + \
202 ((m->pindex - ipindex_start) << PAGE_SHIFT); \
203 iptep = pmap_pte(ipmap, iva); \
204 if (iptep == NULL) \
205 continue; \
206 ipte = *iptep; \
0ad80e33 207 cpu_ccfence(); \
567a6398
MD
208 if (m->phys_addr != (ipte & PG_FRAME)) \
209 continue; \
210
211#define PMAP_PAGE_BACKING_RETRY \
212 { \
213 next_ba = iba; \
214 continue; \
215 } \
216
217#define PMAP_PAGE_BACKING_DONE \
218 } \
219 lockmgr(&iobj->backing_lk, LK_RELEASE); \
220 } \
221
db2ec6f8 222static struct pmap iso_pmap;
c713db65
AL
223static struct pmap kernel_pmap_store;
224struct pmap *kernel_pmap = &kernel_pmap_store;
d7f50089 225
c8fe38ae
MD
226vm_paddr_t avail_start; /* PA of first available physical page */
227vm_paddr_t avail_end; /* PA of last available physical page */
791c6551
MD
228vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
229vm_offset_t virtual2_end;
6379cf29 230vm_offset_t virtual_start; /* VA of first avail page (after kernel BSS) */
c8fe38ae
MD
231vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
232vm_offset_t KvaStart; /* VA start of KVA space */
233vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
6379cf29 234vm_offset_t KvaSize; /* max size of KVA space */
c2ec3418 235vm_offset_t DMapMaxAddress;
6379cf29 236
427fbc33
MD
237/* Has pmap_init completed? */
238__read_frequently static boolean_t pmap_initialized = FALSE;
a86ce0cd 239//static int pgeflag; /* PG_G or-in */
6379cf29 240static uint64_t PatMsr; /* value of MSR_PAT */
d7f50089 241
48ffc236
JG
242static int ndmpdp;
243static vm_paddr_t dmaplimit;
791c6551 244vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
d7f50089 245
b524ca76 246static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
c2ec3418 247static pt_entry_t pat_pde_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
b524ca76 248
791c6551
MD
249static uint64_t KPTbase;
250static uint64_t KPTphys;
6379cf29
AL
251static uint64_t KPDphys; /* phys addr of kernel level 2 */
252static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
8ff9866b
MD
253uint64_t KPDPphys; /* phys addr of kernel level 3 */
254uint64_t KPML4phys; /* phys addr of kernel level 4 */
48ffc236 255
6379cf29
AL
256static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
257static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
48ffc236 258
d7f50089 259/*
c8fe38ae 260 * Data for the pv entry allocation mechanism
d7f50089 261 */
df49ec1e
MD
262__read_mostly static vm_zone_t pvzone;
263__read_mostly static int pmap_pagedaemon_waken = 0;
c8fe38ae 264static struct vm_zone pvzone_store;
c8fe38ae 265static struct pv_entry *pvinit;
d7f50089
YY
266
267/*
c8fe38ae 268 * All those kernel PT submaps that BSD is so fond of
d7f50089 269 */
db2ec6f8 270pt_entry_t *CMAP1 = NULL;
4c0cc8bb 271caddr_t CADDR1 = NULL, ptvmmap = NULL;
db2ec6f8 272static pt_entry_t *msgbufmap, *ptmmap;
6379cf29 273struct msgbuf *msgbufp = NULL;
d7f50089 274
a86ce0cd 275/*
24aa2e44 276 * PG_* bits for regular (x86) pmap.
a86ce0cd 277 */
24aa2e44
AL
278__read_frequently static uint64_t pmap_bits_default[PG_BITS_SIZE] = {
279 [TYPE_IDX] = REGULAR_PMAP,
280 [PG_V_IDX] = X86_PG_V,
281 [PG_RW_IDX] = X86_PG_RW,
282 [PG_U_IDX] = X86_PG_U,
283 [PG_A_IDX] = X86_PG_A,
284 [PG_M_IDX] = X86_PG_M,
285 [PG_PS_IDX] = X86_PG_PS,
286 [PG_G_IDX] = X86_PG_G,
287 [PG_W_IDX] = X86_PG_AVAIL1,
288 [PG_MANAGED_IDX] = X86_PG_AVAIL2,
289 [PG_N_IDX] = X86_PG_NC_PWT | X86_PG_NC_PCD,
290 [PG_NX_IDX] = X86_PG_NX,
a86ce0cd 291};
427fbc33 292
c8fe38ae
MD
293/*
294 * Crashdump maps.
d7f50089 295 */
c8fe38ae
MD
296static pt_entry_t *pt_crashdumpmap;
297static caddr_t crashdumpmap;
298
a7a03a5f
MD
299static int pmap_debug = 0;
300SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
301 &pmap_debug, 0, "Debug pmap's");
a44410dd
MD
302#ifdef PMAP_DEBUG2
303static int pmap_enter_debug = 0;
304SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
305 &pmap_enter_debug, 0, "Debug pmap_enter's");
306#endif
b12defdc
MD
307static int pmap_yield_count = 64;
308SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
309 &pmap_yield_count, 0, "Yield during init_pt/release");
db2ec6f8 310static int pmap_fast_kernel_cpusync = 0;
b8d5441d
MD
311SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
312 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
db2ec6f8 313static int pmap_dynamic_delete = 0;
582f286d
MD
314SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
315 &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
db2ec6f8 316static int pmap_lock_delay = 100;
bb1339f8
MD
317SYSCTL_INT(_machdep, OID_AUTO, pmap_lock_delay, CTLFLAG_RW,
318 &pmap_lock_delay, 0, "Spin loops");
94c5f25a
MD
319static int meltdown_mitigation = -1;
320TUNABLE_INT("machdep.meltdown_mitigation", &meltdown_mitigation);
321SYSCTL_INT(_machdep, OID_AUTO, meltdown_mitigation, CTLFLAG_RW,
322 &meltdown_mitigation, 0, "Userland pmap isolation");
b12defdc 323
d92e3890 324static int pmap_nx_enable = -1; /* -1 = auto */
2620a64f 325/* needs manual TUNABLE in early probe, see below */
d92e3890
MD
326SYSCTL_INT(_machdep, OID_AUTO, pmap_nx_enable, CTLFLAG_RD,
327 &pmap_nx_enable, 0,
328 "no-execute support (0=disabled, 1=w/READ, 2=w/READ & WRITE)");
2620a64f 329
e05899ce
MD
330static int pmap_pv_debug = 50;
331SYSCTL_INT(_machdep, OID_AUTO, pmap_pv_debug, CTLFLAG_RW,
332 &pmap_pv_debug, 0, "");
333
df49ec1e
MD
334static long vm_pmap_pv_entries;
335SYSCTL_LONG(_vm, OID_AUTO, pmap_pv_entries, CTLFLAG_RD,
336 &vm_pmap_pv_entries, 0, "");
337
a86ce0cd
MD
338/* Standard user access funtions */
339extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
340 size_t *lencopied);
341extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
342extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
5947157e
MD
343extern int std_fubyte (const uint8_t *base);
344extern int std_subyte (uint8_t *base, uint8_t byte);
345extern int32_t std_fuword32 (const uint32_t *base);
346extern int64_t std_fuword64 (const uint64_t *base);
347extern int std_suword64 (uint64_t *base, uint64_t word);
348extern int std_suword32 (uint32_t *base, int word);
7f4bfbe7
MD
349extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
350extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
6481baf4
MD
351extern uint32_t std_fuwordadd32 (volatile uint32_t *base, uint32_t v);
352extern uint64_t std_fuwordadd64 (volatile uint64_t *base, uint64_t v);
a86ce0cd 353
567a6398 354#if 0
701c977e 355static void pv_hold(pv_entry_t pv);
567a6398 356#endif
701c977e
MD
357static int _pv_hold_try(pv_entry_t pv
358 PMAP_DEBUG_DECL);
359static void pv_drop(pv_entry_t pv);
360static void _pv_lock(pv_entry_t pv
361 PMAP_DEBUG_DECL);
362static void pv_unlock(pv_entry_t pv);
363static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
364 PMAP_DEBUG_DECL);
76f1911e 365static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
701c977e 366 PMAP_DEBUG_DECL);
e989b548 367static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
76f1911e
MD
368static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
369 vm_pindex_t **pmarkp, int *errorp);
701c977e 370static void pv_put(pv_entry_t pv);
701c977e
MD
371static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
372static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
373 pv_entry_t *pvpp);
ccd67bf6 374static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
a7a03a5f 375 pmap_inval_bulk_t *bulk, int destroy);
c2830aa6 376static vm_page_t pmap_remove_pv_page(pv_entry_t pv, int clrpgbits);
ccd67bf6
MD
377static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
378 pmap_inval_bulk_t *bulk);
701c977e 379
9df83100
MD
380struct pmap_scan_info;
381static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
567a6398 382 vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
921c891e 383 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
9df83100 384static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
567a6398 385 vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
921c891e 386 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
701c977e 387
d87f4462 388static void x86_64_protection_init (void);
bfc09ba0
MD
389static void create_pagetables(vm_paddr_t *firstaddr);
390static void pmap_remove_all (vm_page_t m);
c8fe38ae 391static boolean_t pmap_testbit (vm_page_t m, int bit);
c8fe38ae 392
567a6398 393static pt_entry_t *pmap_pte_quick (pmap_t pmap, vm_offset_t va);
c8fe38ae
MD
394static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
395
a86ce0cd 396static void pmap_pinit_defaults(struct pmap *pmap);
76f1911e
MD
397static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
398static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
a86ce0cd 399
701c977e
MD
400static int
401pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
402{
403 if (pv1->pv_pindex < pv2->pv_pindex)
404 return(-1);
405 if (pv1->pv_pindex > pv2->pv_pindex)
406 return(1);
407 return(0);
408}
409
410RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
411 pv_entry_compare, vm_pindex_t, pv_pindex);
412
c2830aa6
MD
413/*
414 * We have removed a managed pte. The page might not be hard or soft-busied
415 * at this point so we have to be careful.
416 *
417 * If advanced mode is enabled we can clear PG_MAPPED/WRITEABLE only if
418 * MAPPEDMULTI is not set. This must be done atomically against possible
419 * concurrent pmap_enter()s occurring at the same time. If MULTI is set
420 * then the kernel may have to call vm_page_protect() later on to clean
421 * the bits up. This is particularly important for kernel_map/kernel_object
422 * mappings due to the expense of scanning the kernel_object's vm_backing's.
423 *
424 * If advanced mode is not enabled we update our tracking counts and
425 * synchronize PG_MAPPED/WRITEABLE later on in pmap_mapped_sync().
426 */
427static __inline
428void
429pmap_removed_pte(vm_page_t m, pt_entry_t pte)
430{
c2830aa6
MD
431 int flags;
432 int nflags;
433
434 flags = m->flags;
435 cpu_ccfence();
436 while ((flags & PG_MAPPEDMULTI) == 0) {
437 nflags = flags & ~(PG_MAPPED | PG_WRITEABLE);
438 if (atomic_fcmpset_int(&m->flags, &flags, nflags))
439 break;
440 }
c2830aa6
MD
441}
442
d7f50089 443/*
c8fe38ae 444 * Move the kernel virtual free pointer to the next
f9cc0f15
JG
445 * 2MB. This is used to help improve performance
446 * by using a large (2MB) page for much of the kernel
c8fe38ae 447 * (.text, .data, .bss)
d7f50089 448 */
bfc09ba0
MD
449static
450vm_offset_t
c8fe38ae 451pmap_kmem_choose(vm_offset_t addr)
d7f50089 452{
c8fe38ae 453 vm_offset_t newaddr = addr;
f9cc0f15 454
965b839f 455 newaddr = roundup2(addr, NBPDR);
c8fe38ae 456 return newaddr;
d7f50089
YY
457}
458
701c977e
MD
459/*
460 * Returns the pindex of a page table entry (representing a terminal page).
461 * There are NUPTE_TOTAL page table entries possible (a huge number)
462 *
463 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
464 * We want to properly translate negative KVAs.
465 */
bfc09ba0
MD
466static __inline
467vm_pindex_t
701c977e 468pmap_pte_pindex(vm_offset_t va)
48ffc236 469{
701c977e 470 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
48ffc236
JG
471}
472
701c977e
MD
473/*
474 * Returns the pindex of a page table.
475 */
bfc09ba0
MD
476static __inline
477vm_pindex_t
701c977e 478pmap_pt_pindex(vm_offset_t va)
48ffc236 479{
701c977e
MD
480 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
481}
48ffc236 482
701c977e
MD
483/*
484 * Returns the pindex of a page directory.
485 */
486static __inline
487vm_pindex_t
488pmap_pd_pindex(vm_offset_t va)
489{
490 return (NUPTE_TOTAL + NUPT_TOTAL +
491 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
48ffc236
JG
492}
493
bfc09ba0
MD
494static __inline
495vm_pindex_t
701c977e 496pmap_pdp_pindex(vm_offset_t va)
48ffc236 497{
701c977e
MD
498 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
499 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
500}
48ffc236 501
701c977e
MD
502static __inline
503vm_pindex_t
504pmap_pml4_pindex(void)
505{
506 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
48ffc236
JG
507}
508
701c977e 509/*
4b01284d 510 * Return various *clipped* indexes for a given VA.
701c977e 511 *
4b01284d
AL
512 * Returns the index of a PTE in a page table (PT), representing
513 * a terminal page.
514 */
515static __inline
516vm_pindex_t
517pmap_pte_index(vm_offset_t va)
518{
519 return ((va >> PAGE_SHIFT) & ((1UL << NPTEPGSHIFT) - 1));
520}
521
522/*
523 * Returns the index of a PDE in a page directory (PD) table, representing
524 * a page table (PT).
701c977e
MD
525 */
526static __inline
527vm_pindex_t
528pmap_pt_index(vm_offset_t va)
529{
4b01284d 530 return ((va >> PDRSHIFT) & ((1UL << NPDEPGSHIFT) - 1));
48ffc236
JG
531}
532
701c977e 533/*
4b01284d
AL
534 * Returns the index of a PDPE in a page directory pointer (PDP) table,
535 * representing a page directory (PD) table.
701c977e 536 */
bfc09ba0
MD
537static __inline
538vm_pindex_t
701c977e 539pmap_pd_index(vm_offset_t va)
48ffc236 540{
4b01284d 541 return ((va >> PDPSHIFT) & ((1UL << NPDPEPGSHIFT) - 1));
701c977e 542}
48ffc236 543
701c977e 544/*
4b01284d
AL
545 * Returns the index of a PML4E in the PML4 table, representing a page
546 * directory pointer (PDP) table.
701c977e
MD
547 */
548static __inline
549vm_pindex_t
550pmap_pdp_index(vm_offset_t va)
551{
4b01284d 552 return ((va >> PML4SHIFT) & ((1UL << NPML4EPGSHIFT) - 1));
48ffc236
JG
553}
554
67e78c75 555/*
737b020b 556 * Of all the layers (PT, PD, PDP, PML4) the best one to cache is
67e78c75 557 * the PT layer. This will speed up core pmap operations considerably.
67e78c75
MD
558 *
559 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
560 * must be in a known associated state (typically by being locked when
561 * the pmap spinlock isn't held). We allow the race for that case.
562 *
563 * NOTE: pm_pvhint* is only accessed (read) with the spin-lock held, using
564 * cpu_ccfence() to prevent compiler optimizations from reloading the
565 * field.
566 */
567static __inline
568void
569pv_cache(pmap_t pmap, pv_entry_t pv, vm_pindex_t pindex)
570{
571 if (pindex < pmap_pt_pindex(0)) {
567a6398 572 ;
67e78c75
MD
573 } else if (pindex < pmap_pd_pindex(0)) {
574 pmap->pm_pvhint_pt = pv;
575 }
576}
577
bb1339f8
MD
578/*
579 * Locate the requested pt_entry
580 */
581static __inline
582pv_entry_t
583pv_entry_lookup(pmap_t pmap, vm_pindex_t pindex)
584{
585 pv_entry_t pv;
586
587 if (pindex < pmap_pt_pindex(0))
567a6398
MD
588 return NULL;
589#if 1
590 if (pindex < pmap_pd_pindex(0))
bb1339f8
MD
591 pv = pmap->pm_pvhint_pt;
592 else
593 pv = NULL;
594 cpu_ccfence();
595 if (pv == NULL || pv->pv_pmap != pmap) {
67e78c75
MD
596 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
597 if (pv)
598 pv_cache(pmap, pv, pindex);
bb1339f8
MD
599 } else if (pv->pv_pindex != pindex) {
600 pv = pv_entry_rb_tree_RB_LOOKUP_REL(&pmap->pm_pvroot,
601 pindex, pv);
67e78c75
MD
602 if (pv)
603 pv_cache(pmap, pv, pindex);
bb1339f8 604 }
67e78c75
MD
605#else
606 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
607#endif
bb1339f8
MD
608 return pv;
609}
610
611/*
612 * pmap_pte_quick:
613 *
614 * Super fast pmap_pte routine best used when scanning the pv lists.
615 * This eliminates many course-grained invltlb calls. Note that many of
616 * the pv list scans are across different pmaps and it is very wasteful
617 * to do an entire invltlb when checking a single mapping.
618 */
619static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
620
621static
622pt_entry_t *
623pmap_pte_quick(pmap_t pmap, vm_offset_t va)
624{
625 return pmap_pte(pmap, va);
626}
627
76f1911e
MD
628/*
629 * The placemarker hash must be broken up into four zones so lock
630 * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
631 *
632 * Placemarkers are used to 'lock' page table indices that do not have
633 * a pv_entry. This allows the pmap to support managed and unmanaged
634 * pages and shared page tables.
635 */
636#define PM_PLACE_BASE (PM_PLACEMARKS >> 2)
637
638static __inline
639vm_pindex_t *
640pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
641{
642 int hi;
643
644 if (pindex < pmap_pt_pindex(0)) /* zone 0 - PTE */
645 hi = 0;
646 else if (pindex < pmap_pd_pindex(0)) /* zone 1 - PT */
647 hi = PM_PLACE_BASE;
648 else if (pindex < pmap_pdp_pindex(0)) /* zone 2 - PD */
649 hi = PM_PLACE_BASE << 1;
650 else /* zone 3 - PDP (and PML4E) */
651 hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
652 hi += pindex & (PM_PLACE_BASE - 1);
653
654 return (&pmap->pm_placemarks[hi]);
655}
656
657
701c977e
MD
658/*
659 * Generic procedure to index a pte from a pt, pd, or pdp.
921c891e
MD
660 *
661 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
662 * a page table page index but is instead of PV lookup index.
701c977e
MD
663 */
664static
665void *
666pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
667{
668 pt_entry_t *pte;
669
670 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
671 return(&pte[pindex]);
672}
673
674/*
675 * Return pointer to PDP slot in the PML4
676 */
bfc09ba0
MD
677static __inline
678pml4_entry_t *
701c977e 679pmap_pdp(pmap_t pmap, vm_offset_t va)
48ffc236 680{
701c977e 681 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
48ffc236
JG
682}
683
701c977e
MD
684/*
685 * Return pointer to PD slot in the PDP given a pointer to the PDP
686 */
bfc09ba0
MD
687static __inline
688pdp_entry_t *
eb010d6e 689pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
48ffc236 690{
701c977e 691 pdp_entry_t *pd;
48ffc236 692
eb010d6e 693 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
701c977e 694 return (&pd[pmap_pd_index(va)]);
48ffc236
JG
695}
696
701c977e 697/*
eb010d6e
MD
698 * Return pointer to PD slot in the PDP.
699 */
bfc09ba0
MD
700static __inline
701pdp_entry_t *
701c977e 702pmap_pd(pmap_t pmap, vm_offset_t va)
48ffc236 703{
701c977e 704 pml4_entry_t *pdp;
48ffc236 705
701c977e 706 pdp = pmap_pdp(pmap, va);
a86ce0cd 707 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
48ffc236 708 return NULL;
eb010d6e 709 return (pmap_pdp_to_pd(*pdp, va));
48ffc236
JG
710}
711
701c977e
MD
712/*
713 * Return pointer to PT slot in the PD given a pointer to the PD
714 */
bfc09ba0
MD
715static __inline
716pd_entry_t *
eb010d6e 717pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
48ffc236 718{
701c977e 719 pd_entry_t *pt;
48ffc236 720
eb010d6e 721 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
701c977e 722 return (&pt[pmap_pt_index(va)]);
48ffc236
JG
723}
724
701c977e
MD
725/*
726 * Return pointer to PT slot in the PD
eb010d6e
MD
727 *
728 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
729 * so we cannot lookup the PD via the PDP. Instead we
730 * must look it up via the pmap.
701c977e 731 */
bfc09ba0
MD
732static __inline
733pd_entry_t *
701c977e 734pmap_pt(pmap_t pmap, vm_offset_t va)
48ffc236 735{
701c977e 736 pdp_entry_t *pd;
eb010d6e
MD
737 pv_entry_t pv;
738 vm_pindex_t pd_pindex;
08abdbfc 739 vm_paddr_t phys;
eb010d6e
MD
740
741 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
742 pd_pindex = pmap_pd_pindex(va);
08abdbfc 743 spin_lock_shared(&pmap->pm_spin);
eb010d6e 744 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
08abdbfc
MD
745 if (pv == NULL || pv->pv_m == NULL) {
746 spin_unlock_shared(&pmap->pm_spin);
eb010d6e 747 return NULL;
08abdbfc
MD
748 }
749 phys = VM_PAGE_TO_PHYS(pv->pv_m);
750 spin_unlock_shared(&pmap->pm_spin);
751 return (pmap_pd_to_pt(phys, va));
eb010d6e
MD
752 } else {
753 pd = pmap_pd(pmap, va);
a86ce0cd 754 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
eb010d6e
MD
755 return NULL;
756 return (pmap_pd_to_pt(*pd, va));
757 }
48ffc236
JG
758}
759
701c977e
MD
760/*
761 * Return pointer to PTE slot in the PT given a pointer to the PT
762 */
bfc09ba0
MD
763static __inline
764pt_entry_t *
eb010d6e 765pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
48ffc236
JG
766{
767 pt_entry_t *pte;
768
eb010d6e 769 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
48ffc236
JG
770 return (&pte[pmap_pte_index(va)]);
771}
772
701c977e
MD
773/*
774 * Return pointer to PTE slot in the PT
775 */
bfc09ba0
MD
776static __inline
777pt_entry_t *
48ffc236 778pmap_pte(pmap_t pmap, vm_offset_t va)
48ffc236 779{
701c977e 780 pd_entry_t *pt;
48ffc236 781
701c977e 782 pt = pmap_pt(pmap, va);
a86ce0cd 783 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
701c977e 784 return NULL;
a86ce0cd 785 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
701c977e 786 return ((pt_entry_t *)pt);
eb010d6e 787 return (pmap_pt_to_pte(*pt, va));
48ffc236
JG
788}
789
701c977e 790/*
a44410dd
MD
791 * Return address of PT slot in PD (KVM only)
792 *
793 * Cannot be used for user page tables because it might interfere with
794 * the shared page-table-page optimization (pmap_mmu_optimize).
701c977e 795 */
bfc09ba0
MD
796static __inline
797pd_entry_t *
701c977e 798vtopt(vm_offset_t va)
48ffc236 799{
b12defdc
MD
800 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
801 NPML4EPGSHIFT)) - 1);
48ffc236
JG
802
803 return (PDmap + ((va >> PDRSHIFT) & mask));
804}
c8fe38ae 805
701c977e
MD
806/*
807 * KVM - return address of PTE slot in PT
808 */
809static __inline
810pt_entry_t *
811vtopte(vm_offset_t va)
812{
813 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
814 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
815
816 return (PTmap + ((va >> PAGE_SHIFT) & mask));
817}
818
afd7f124
MD
819/*
820 * Returns the physical address translation from va for a user address.
821 * (vm_paddr_t)-1 is returned on failure.
822 */
823vm_paddr_t
824uservtophys(vm_offset_t va)
825{
826 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
827 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
828 vm_paddr_t pa;
829 pt_entry_t pte;
830 pmap_t pmap;
831
832 pmap = vmspace_pmap(mycpu->gd_curthread->td_lwp->lwp_vmspace);
833 pa = (vm_paddr_t)-1;
834 if (va < VM_MAX_USER_ADDRESS) {
835 pte = kreadmem64(PTmap + ((va >> PAGE_SHIFT) & mask));
836 if (pte & pmap->pmap_bits[PG_V_IDX])
837 pa = (pte & PG_FRAME) | (va & PAGE_MASK);
838 }
839 return pa;
840}
841
48ffc236 842static uint64_t
8e5ea5f7 843allocpages(vm_paddr_t *firstaddr, long n)
d7f50089 844{
48ffc236 845 uint64_t ret;
c8fe38ae
MD
846
847 ret = *firstaddr;
848 bzero((void *)ret, n * PAGE_SIZE);
849 *firstaddr += n * PAGE_SIZE;
850 return (ret);
d7f50089
YY
851}
852
bfc09ba0 853static
c8fe38ae
MD
854void
855create_pagetables(vm_paddr_t *firstaddr)
856{
8e5ea5f7 857 long i; /* must be 64 bits */
da23a592
MD
858 long nkpt_base;
859 long nkpt_phys;
8ff9866b 860 long nkpd_phys;
33fb3ba1 861 int j;
c8fe38ae 862
ad54aa11
MD
863 /*
864 * We are running (mostly) V=P at this point
865 *
8ff9866b
MD
866 * Calculate how many 1GB PD entries in our PDP pages are needed
867 * for the DMAP. This is only allocated if the system does not
868 * support 1GB pages. Otherwise ndmpdp is simply a count of
869 * the number of 1G terminal entries in our PDP pages are needed.
ad54aa11 870 *
8ff9866b 871 * NOTE: Maxmem is in pages
ad54aa11 872 */
86dae8f1 873 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
faeb2db3 874 if (ndmpdp < 4) /* Minimum 4GB of DMAP */
86dae8f1 875 ndmpdp = 4;
faeb2db3 876
ebc415a3 877#if 0
faeb2db3
MD
878 /*
879 * HACK XXX fix me - Some laptops map the EFI framebuffer in
880 * very high physical addresses and the DMAP winds up being too
881 * small. The EFI framebuffer has to be mapped for the console
882 * very early and the DMAP is how it does it.
883 */
884 if (ndmpdp < 512) /* Minimum 512GB of DMAP */
885 ndmpdp = 512;
ebc415a3 886#endif
faeb2db3 887
8ff9866b 888 KKASSERT(ndmpdp <= NDMPML4E * NPML4EPG);
c2ec3418
MD
889 DMapMaxAddress = DMAP_MIN_ADDRESS +
890 ((ndmpdp * NPDEPG) << PDRSHIFT);
8ff9866b
MD
891
892 /*
893 * Starting at KERNBASE - map all 2G worth of page table pages.
894 * KERNBASE is offset -2G from the end of kvm. This will accomodate
895 * all KVM allocations above KERNBASE, including the SYSMAPs below.
896 *
897 * We do this by allocating 2*512 PT pages. Each PT page can map
898 * 2MB, for 2GB total.
899 */
900 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
86dae8f1 901
da23a592 902 /*
8ff9866b
MD
903 * Starting at the beginning of kvm (VM_MIN_KERNEL_ADDRESS),
904 * Calculate how many page table pages we need to preallocate
905 * for early vm_map allocations.
906 *
907 * A few extra won't hurt, they will get used up in the running
908 * system.
909 *
910 * vm_page array
911 * initial pventry's
da23a592 912 */
4f048b1c
SW
913 nkpt_phys = howmany(Maxmem * sizeof(struct vm_page), NBPDR);
914 nkpt_phys += howmany(Maxmem * sizeof(struct pv_entry), NBPDR);
8ff9866b 915 nkpt_phys += 128; /* a few extra */
da23a592
MD
916
917 /*
8ff9866b
MD
918 * The highest value nkpd_phys can be set to is
919 * NKPDPE - (NPDPEPG - KPDPI) (i.e. NKPDPE - 2).
920 *
921 * Doing so would cause all PD pages to be pre-populated for
922 * a maximal KVM space (approximately 16*512 pages, or 32MB.
923 * We can save memory by not doing this.
da23a592 924 */
8ff9866b 925 nkpd_phys = (nkpt_phys + NPDPEPG - 1) / NPDPEPG;
c8fe38ae 926
ad54aa11
MD
927 /*
928 * Allocate pages
8ff9866b
MD
929 *
930 * Normally NKPML4E=1-16 (1-16 kernel PDP page)
931 * Normally NKPDPE= NKPML4E*512-1 (511 min kernel PD pages)
932 *
933 * Only allocate enough PD pages
934 * NOTE: We allocate all kernel PD pages up-front, typically
935 * ~511G of KVM, requiring 511 PD pages.
ad54aa11 936 */
8ff9866b
MD
937 KPTbase = allocpages(firstaddr, nkpt_base); /* KERNBASE to end */
938 KPTphys = allocpages(firstaddr, nkpt_phys); /* KVA start */
939 KPML4phys = allocpages(firstaddr, 1); /* recursive PML4 map */
940 KPDPphys = allocpages(firstaddr, NKPML4E); /* kernel PDP pages */
941 KPDphys = allocpages(firstaddr, nkpd_phys); /* kernel PD pages */
791c6551
MD
942
943 /*
8ff9866b 944 * Alloc PD pages for the area starting at KERNBASE.
791c6551 945 */
8ff9866b 946 KPDbase = allocpages(firstaddr, NPDPEPG - KPDPI);
48ffc236 947
8ff9866b 948 /*
c2ec3418
MD
949 * Stuff for our DMAP. Use 2MB pages even when 1GB pages
950 * are available in order to allow APU code to adjust page
951 * attributes on a fixed grain (see pmap_change_attr()).
8ff9866b 952 */
48ffc236 953 DMPDPphys = allocpages(firstaddr, NDMPML4E);
c2ec3418
MD
954#if 1
955 DMPDphys = allocpages(firstaddr, ndmpdp);
956#else
48ffc236
JG
957 if ((amd_feature & AMDID_PAGE1GB) == 0)
958 DMPDphys = allocpages(firstaddr, ndmpdp);
c2ec3418 959#endif
48ffc236
JG
960 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
961
791c6551
MD
962 /*
963 * Fill in the underlying page table pages for the area around
964 * KERNBASE. This remaps low physical memory to KERNBASE.
965 *
966 * Read-only from zero to physfree
967 * XXX not fully used, underneath 2M pages
968 */
48ffc236 969 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
791c6551 970 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
a86ce0cd
MD
971 ((pt_entry_t *)KPTbase)[i] |=
972 pmap_bits_default[PG_RW_IDX] |
973 pmap_bits_default[PG_V_IDX] |
974 pmap_bits_default[PG_G_IDX];
48ffc236
JG
975 }
976
791c6551
MD
977 /*
978 * Now map the initial kernel page tables. One block of page
979 * tables is placed at the beginning of kernel virtual memory,
980 * and another block is placed at KERNBASE to map the kernel binary,
981 * data, bss, and initial pre-allocations.
982 */
da23a592 983 for (i = 0; i < nkpt_base; i++) {
791c6551 984 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
a86ce0cd
MD
985 ((pd_entry_t *)KPDbase)[i] |=
986 pmap_bits_default[PG_RW_IDX] |
987 pmap_bits_default[PG_V_IDX];
791c6551 988 }
da23a592 989 for (i = 0; i < nkpt_phys; i++) {
48ffc236 990 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
a86ce0cd
MD
991 ((pd_entry_t *)KPDphys)[i] |=
992 pmap_bits_default[PG_RW_IDX] |
993 pmap_bits_default[PG_V_IDX];
48ffc236
JG
994 }
995
791c6551
MD
996 /*
997 * Map from zero to end of allocations using 2M pages as an
998 * optimization. This will bypass some of the KPTBase pages
999 * above in the KERNBASE area.
1000 */
48ffc236 1001 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
791c6551 1002 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
a86ce0cd
MD
1003 ((pd_entry_t *)KPDbase)[i] |=
1004 pmap_bits_default[PG_RW_IDX] |
1005 pmap_bits_default[PG_V_IDX] |
1006 pmap_bits_default[PG_PS_IDX] |
1007 pmap_bits_default[PG_G_IDX];
48ffc236
JG
1008 }
1009
791c6551 1010 /*
8ff9866b
MD
1011 * Load PD addresses into the PDP pages for primary KVA space to
1012 * cover existing page tables. PD's for KERNBASE are handled in
1013 * the next loop.
1014 *
1015 * expected to pre-populate all of its PDs. See NKPDPE in vmparam.h.
791c6551 1016 */
8ff9866b
MD
1017 for (i = 0; i < nkpd_phys; i++) {
1018 ((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] =
791c6551 1019 KPDphys + (i << PAGE_SHIFT);
8ff9866b
MD
1020 ((pdp_entry_t *)KPDPphys)[NKPML4E * NPDPEPG - NKPDPE + i] |=
1021 pmap_bits_default[PG_RW_IDX] |
1022 pmap_bits_default[PG_V_IDX] |
9e24b495 1023 pmap_bits_default[PG_A_IDX];
8ff9866b
MD
1024 }
1025
1026 /*
1027 * Load PDs for KERNBASE to the end
1028 */
1029 i = (NKPML4E - 1) * NPDPEPG + KPDPI;
1030 for (j = 0; j < NPDPEPG - KPDPI; ++j) {
1031 ((pdp_entry_t *)KPDPphys)[i + j] =
1032 KPDbase + (j << PAGE_SHIFT);
1033 ((pdp_entry_t *)KPDPphys)[i + j] |=
a86ce0cd
MD
1034 pmap_bits_default[PG_RW_IDX] |
1035 pmap_bits_default[PG_V_IDX] |
9e24b495 1036 pmap_bits_default[PG_A_IDX];
48ffc236
JG
1037 }
1038
33fb3ba1
MD
1039 /*
1040 * Now set up the direct map space using either 2MB or 1GB pages
1041 * Preset PG_M and PG_A because demotion expects it.
1042 *
1043 * When filling in entries in the PD pages make sure any excess
1044 * entries are set to zero as we allocated enough PD pages
c2ec3418
MD
1045 *
1046 * Stuff for our DMAP. Use 2MB pages even when 1GB pages
1047 * are available in order to allow APU code to adjust page
1048 * attributes on a fixed grain (see pmap_change_attr()).
33fb3ba1 1049 */
c2ec3418
MD
1050#if 0
1051 if ((amd_feature & AMDID_PAGE1GB) == 0)
1052#endif
1053 {
9e24b495
MD
1054 /*
1055 * Use 2MB pages
1056 */
48ffc236 1057 for (i = 0; i < NPDEPG * ndmpdp; i++) {
8e5ea5f7 1058 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
a86ce0cd
MD
1059 ((pd_entry_t *)DMPDphys)[i] |=
1060 pmap_bits_default[PG_RW_IDX] |
1061 pmap_bits_default[PG_V_IDX] |
1062 pmap_bits_default[PG_PS_IDX] |
1063 pmap_bits_default[PG_G_IDX] |
1064 pmap_bits_default[PG_M_IDX] |
1065 pmap_bits_default[PG_A_IDX];
48ffc236 1066 }
33fb3ba1
MD
1067
1068 /*
1069 * And the direct map space's PDP
1070 */
48ffc236
JG
1071 for (i = 0; i < ndmpdp; i++) {
1072 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
33fb3ba1 1073 (i << PAGE_SHIFT);
a86ce0cd
MD
1074 ((pdp_entry_t *)DMPDPphys)[i] |=
1075 pmap_bits_default[PG_RW_IDX] |
c2ec3418
MD
1076 pmap_bits_default[PG_V_IDX] |
1077 pmap_bits_default[PG_A_IDX];
48ffc236 1078 }
c2ec3418
MD
1079 }
1080#if 0
1081 else {
9e24b495
MD
1082 /*
1083 * 1GB pages
1084 */
48ffc236
JG
1085 for (i = 0; i < ndmpdp; i++) {
1086 ((pdp_entry_t *)DMPDPphys)[i] =
33fb3ba1 1087 (vm_paddr_t)i << PDPSHIFT;
a86ce0cd
MD
1088 ((pdp_entry_t *)DMPDPphys)[i] |=
1089 pmap_bits_default[PG_RW_IDX] |
1090 pmap_bits_default[PG_V_IDX] |
1091 pmap_bits_default[PG_PS_IDX] |
1092 pmap_bits_default[PG_G_IDX] |
1093 pmap_bits_default[PG_M_IDX] |
1094 pmap_bits_default[PG_A_IDX];
48ffc236
JG
1095 }
1096 }
c2ec3418 1097#endif
48ffc236
JG
1098
1099 /* And recursively map PML4 to itself in order to get PTmap */
1100 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
a86ce0cd
MD
1101 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
1102 pmap_bits_default[PG_RW_IDX] |
1103 pmap_bits_default[PG_V_IDX] |
9e24b495 1104 pmap_bits_default[PG_A_IDX];
48ffc236 1105
33fb3ba1
MD
1106 /*
1107 * Connect the Direct Map slots up to the PML4
1108 */
1109 for (j = 0; j < NDMPML4E; ++j) {
1110 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
f70051b1 1111 (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
a86ce0cd
MD
1112 pmap_bits_default[PG_RW_IDX] |
1113 pmap_bits_default[PG_V_IDX] |
9e24b495 1114 pmap_bits_default[PG_A_IDX];
33fb3ba1 1115 }
48ffc236 1116
33fb3ba1
MD
1117 /*
1118 * Connect the KVA slot up to the PML4
1119 */
8ff9866b
MD
1120 for (j = 0; j < NKPML4E; ++j) {
1121 ((pdp_entry_t *)KPML4phys)[KPML4I + j] =
1122 KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT);
1123 ((pdp_entry_t *)KPML4phys)[KPML4I + j] |=
1124 pmap_bits_default[PG_RW_IDX] |
1125 pmap_bits_default[PG_V_IDX] |
9e24b495 1126 pmap_bits_default[PG_A_IDX];
8ff9866b
MD
1127 }
1128 cpu_mfence();
1129 cpu_invltlb();
c8fe38ae
MD
1130}
1131
d7f50089 1132/*
c8fe38ae
MD
1133 * Bootstrap the system enough to run with virtual memory.
1134 *
d87f4462 1135 * On x86_64 this is called after mapping has already been enabled
c8fe38ae
MD
1136 * and just syncs the pmap module with what has already been done.
1137 * [We can't call it easily with mapping off since the kernel is not
1138 * mapped with PA == VA, hence we would have to relocate every address
1139 * from the linked base (virtual) address "KERNBASE" to the actual
1140 * (physical) address starting relative to 0]
d7f50089
YY
1141 */
1142void
48ffc236 1143pmap_bootstrap(vm_paddr_t *firstaddr)
c8fe38ae
MD
1144{
1145 vm_offset_t va;
1146 pt_entry_t *pte;
76f1911e 1147 int i;
c8fe38ae 1148
48ffc236
JG
1149 KvaStart = VM_MIN_KERNEL_ADDRESS;
1150 KvaEnd = VM_MAX_KERNEL_ADDRESS;
1151 KvaSize = KvaEnd - KvaStart;
1152
c8fe38ae
MD
1153 avail_start = *firstaddr;
1154
1155 /*
48ffc236 1156 * Create an initial set of page tables to run the kernel in.
c8fe38ae 1157 */
48ffc236
JG
1158 create_pagetables(firstaddr);
1159
791c6551
MD
1160 virtual2_start = KvaStart;
1161 virtual2_end = PTOV_OFFSET;
1162
c8fe38ae
MD
1163 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
1164 virtual_start = pmap_kmem_choose(virtual_start);
48ffc236
JG
1165
1166 virtual_end = VM_MAX_KERNEL_ADDRESS;
1167
1168 /* XXX do %cr0 as well */
1169 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1170 load_cr3(KPML4phys);
c8fe38ae
MD
1171
1172 /*
1173 * Initialize protection array.
1174 */
d87f4462 1175 x86_64_protection_init();
c8fe38ae
MD
1176
1177 /*
1178 * The kernel's pmap is statically allocated so we don't have to use
1179 * pmap_create, which is unlikely to work correctly at this part of
1180 * the boot sequence (XXX and which no longer exists).
1181 */
c713db65
AL
1182 kernel_pmap->pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
1183 kernel_pmap->pm_count = 1;
1184 CPUMASK_ASSALLONES(kernel_pmap->pm_active);
1185 RB_INIT(&kernel_pmap->pm_pvroot);
1186 spin_init(&kernel_pmap->pm_spin, "pmapbootstrap");
76f1911e 1187 for (i = 0; i < PM_PLACEMARKS; ++i)
c713db65 1188 kernel_pmap->pm_placemarks[i] = PM_NOPLACEMARK;
c8fe38ae
MD
1189
1190 /*
1191 * Reserve some special page table entries/VA space for temporary
1192 * mapping of pages.
1193 */
1194#define SYSMAP(c, p, v, n) \
1195 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1196
1197 va = virtual_start;
48ffc236 1198 pte = vtopte(va);
c8fe38ae
MD
1199
1200 /*
1201 * CMAP1/CMAP2 are used for zeroing and copying pages.
1202 */
1203 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
1204
1205 /*
1206 * Crashdump maps.
1207 */
1208 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
1209
1210 /*
1211 * ptvmmap is used for reading arbitrary physical pages via
1212 * /dev/mem.
1213 */
1214 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
1215
1216 /*
1217 * msgbufp is used to map the system message buffer.
1218 * XXX msgbufmap is not used.
1219 */
1220 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
1221 atop(round_page(MSGBUF_SIZE)))
1222
1223 virtual_start = va;
e172ba36 1224 virtual_start = pmap_kmem_choose(virtual_start);
c8fe38ae
MD
1225
1226 *CMAP1 = 0;
c8fe38ae
MD
1227
1228 /*
1229 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1230 * cases rather then invl1pg. Actually, I don't even know why it
1231 * works under UP because self-referential page table mappings
1232 */
a86ce0cd 1233// pgeflag = 0;
1918fc5c 1234
c8fe38ae 1235 cpu_invltlb();
b524ca76
MD
1236
1237 /* Initialize the PAT MSR */
1238 pmap_init_pat();
c713db65 1239 pmap_pinit_defaults(kernel_pmap);
b8d5441d
MD
1240
1241 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1242 &pmap_fast_kernel_cpusync);
1243
b524ca76
MD
1244}
1245
1246/*
1247 * Setup the PAT MSR.
1248 */
1249void
1250pmap_init_pat(void)
1251{
1252 uint64_t pat_msr;
1253 u_long cr0, cr4;
c2ec3418 1254 int i;
b524ca76
MD
1255
1256 /*
1257 * Default values mapping PATi,PCD,PWT bits at system reset.
1258 * The default values effectively ignore the PATi bit by
1259 * repeating the encodings for 0-3 in 4-7, and map the PCD
1260 * and PWT bit combinations to the expected PAT types.
1261 */
1262 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1263 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1264 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1265 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1266 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1267 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1268 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1269 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1270 pat_pte_index[PAT_WRITE_BACK] = 0;
a86ce0cd
MD
1271 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1272 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1273 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
b524ca76
MD
1274 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1275 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1276
1277 if (cpu_feature & CPUID_PAT) {
1278 /*
1279 * If we support the PAT then set-up entries for
1280 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
704f404a 1281 * 5 and 6.
b524ca76 1282 */
b524ca76 1283 pat_msr = (pat_msr & ~PAT_MASK(5)) |
704f404a
MD
1284 PAT_VALUE(5, PAT_WRITE_PROTECTED);
1285 pat_msr = (pat_msr & ~PAT_MASK(6)) |
1286 PAT_VALUE(6, PAT_WRITE_COMBINING);
1287 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1288 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
b524ca76
MD
1289
1290 /*
1291 * Then enable the PAT
1292 */
1293
1294 /* Disable PGE. */
1295 cr4 = rcr4();
1296 load_cr4(cr4 & ~CR4_PGE);
1297
1298 /* Disable caches (CD = 1, NW = 0). */
1299 cr0 = rcr0();
1300 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1301
1302 /* Flushes caches and TLBs. */
1303 wbinvd();
1304 cpu_invltlb();
1305
1306 /* Update PAT and index table. */
1307 wrmsr(MSR_PAT, pat_msr);
1308
1309 /* Flush caches and TLBs again. */
1310 wbinvd();
1311 cpu_invltlb();
1312
1313 /* Restore caches and PGE. */
1314 load_cr0(cr0);
1315 load_cr4(cr4);
1316 PatMsr = pat_msr;
1317 }
c2ec3418
MD
1318
1319 for (i = 0; i < 8; ++i) {
1320 pt_entry_t pte;
1321
1322 pte = pat_pte_index[i];
1323 if (pte & X86_PG_PTE_PAT) {
1324 pte &= ~X86_PG_PTE_PAT;
1325 pte |= X86_PG_PDE_PAT;
1326 }
1327 pat_pde_index[i] = pte;
1328 }
d7f50089
YY
1329}
1330
1331/*
c8fe38ae 1332 * Set 4mb pdir for mp startup
d7f50089
YY
1333 */
1334void
c8fe38ae
MD
1335pmap_set_opt(void)
1336{
a86ce0cd 1337 if (cpu_feature & CPUID_PSE) {
c8fe38ae 1338 load_cr4(rcr4() | CR4_PSE);
fb59d445 1339 if (mycpu->gd_cpuid == 0) /* only on BSP */
c8fe38ae 1340 cpu_invltlb();
c8fe38ae 1341 }
2f6148a6
MD
1342
1343 /*
1344 * Check for SMAP support and enable if available. Must be done
1345 * after cr3 is loaded, and on all cores.
1346 */
1347 if (cpu_stdext_feature & CPUID_STDEXT_SMAP) {
1348 load_cr4(rcr4() | CR4_SMAP);
1349 }
1350 if (cpu_stdext_feature & CPUID_STDEXT_SMEP) {
1351 load_cr4(rcr4() | CR4_SMEP);
1352 }
d7f50089
YY
1353}
1354
8d2aaeec
MD
1355/*
1356 * SMAP is just a processor flag, but SMEP can only be enabled
1357 * and disabled via CR4. We still use the processor flag to
1358 * disable SMAP because the page-fault/trap code checks it, in
1359 * order to allow a page-fault to actually occur.
1360 */
1361void
1362smap_smep_disable(void)
1363{
1364 /*
1365 * disable SMAP. This also bypasses a software failsafe check
1366 * in the trap() code.
1367 */
1368 smap_open();
1369
1370 /*
1371 * Also needed to bypass a software failsafe check in the trap()
1372 * code and allow the userspace address fault from kernel mode
1373 * to proceed.
1374 *
1375 * Note that This will not reload %rip because pcb_onfault_rsp will
1376 * not match. Just setting it to non-NULL is sufficient to bypass
1377 * the checks.
1378 */
1379 curthread->td_pcb->pcb_onfault = (void *)1;
1380
1381 /*
1382 * Disable SMEP (requires modifying cr4)
1383 */
1384 if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1385 load_cr4(rcr4() & ~CR4_SMEP);
1386}
1387
1388void
1389smap_smep_enable(void)
1390{
1391 if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1392 load_cr4(rcr4() | CR4_SMEP);
1393 curthread->td_pcb->pcb_onfault = NULL;
1394 smap_close();
1395}
1396
c8fe38ae 1397/*
6a0fee04
MD
1398 * Early initialization of the pmap module.
1399 *
1400 * Called by vm_init, to initialize any structures that the pmap
1401 * system needs to map virtual memory. pmap_init has been enhanced to
1402 * support in a fairly consistant way, discontiguous physical memory.
d7f50089
YY
1403 */
1404void
c8fe38ae 1405pmap_init(void)
d7f50089 1406{
b7ea2f3f
MD
1407 vm_pindex_t initial_pvs;
1408 vm_pindex_t i;
c8fe38ae 1409
c8fe38ae
MD
1410 /*
1411 * Allocate memory for random pmap data structures. Includes the
1412 * pv_head_table.
1413 */
701c977e 1414 for (i = 0; i < vm_page_array_size; i++) {
c8fe38ae
MD
1415 vm_page_t m;
1416
1417 m = &vm_page_array[i];
c2830aa6 1418 m->md.interlock_count = 0;
c8fe38ae
MD
1419 }
1420
1421 /*
1422 * init the pv free list
1423 */
1424 initial_pvs = vm_page_array_size;
1425 if (initial_pvs < MINPV)
1426 initial_pvs = MINPV;
1427 pvzone = &pvzone_store;
1eeaf6b2 1428 pvinit = (void *)kmem_alloc(kernel_map,
3091de50
MD
1429 initial_pvs * sizeof (struct pv_entry),
1430 VM_SUBSYS_PVENTRY);
948209ce
MD
1431 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1432 pvinit, initial_pvs);
c8fe38ae
MD
1433
1434 /*
1435 * Now it is safe to enable pv_table recording.
1436 */
1437 pmap_initialized = TRUE;
d7f50089
YY
1438}
1439
c8fe38ae
MD
1440/*
1441 * Initialize the address space (zone) for the pv_entries. Set a
1442 * high water mark so that the system can recover from excessive
1443 * numbers of pv entries.
9e24b495
MD
1444 *
1445 * Also create the kernel page table template for isolated user
1446 * pmaps.
c8fe38ae 1447 */
9e24b495
MD
1448static void pmap_init_iso_range(vm_offset_t base, size_t bytes);
1449static void pmap_init2_iso_pmap(void);
1450#if 0
1451static void dump_pmap(pmap_t pmap, pt_entry_t pte, int level, vm_offset_t base);
1452#endif
1453
d7f50089 1454void
c8fe38ae 1455pmap_init2(void)
d7f50089 1456{
b7ea2f3f 1457 vm_pindex_t entry_max;
c8fe38ae 1458
df49ec1e
MD
1459 /*
1460 * We can significantly reduce pv_entry_max from historical
1461 * levels because pv_entry's are no longer use for PTEs at the
1462 * leafs. This prevents excessive pcpu caching on many-core
1463 * boxes (even with the further '/ 16' done in zinitna().
1464 *
1465 * Remember, however, that processes can share physical pages
1466 * with each process still needing the pdp/pd/pt infrstructure
1467 * (which still use pv_entry's). And don't just assume that
1468 * every PT will be completely filled up. So don't make it
1469 * too small.
1470 */
1471 entry_max = maxproc * 32 + vm_page_array_size / 16;
1472 TUNABLE_LONG_FETCH("vm.pmap.pv_entries", &entry_max);
1473 vm_pmap_pv_entries = entry_max;
948209ce
MD
1474
1475 /*
1476 * Subtract out pages already installed in the zone (hack)
1477 */
df49ec1e
MD
1478 if (entry_max <= MINPV)
1479 entry_max = MINPV;
948209ce 1480
e16c650d 1481 zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
8983ce70
MD
1482
1483 /*
1484 * Enable dynamic deletion of empty higher-level page table pages
1485 * by default only if system memory is < 8GB (use 7GB for slop).
1486 * This can save a little memory, but imposes significant
1487 * performance overhead for things like bulk builds, and for programs
1488 * which do a lot of memory mapping and memory unmapping.
1489 */
567a6398 1490#if 0
8983ce70
MD
1491 if (pmap_dynamic_delete < 0) {
1492 if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1493 pmap_dynamic_delete = 1;
1494 else
1495 pmap_dynamic_delete = 0;
1496 }
567a6398
MD
1497#endif
1498 /*
1499 * Disable so vm_map_backing iterations do not race
1500 */
1501 pmap_dynamic_delete = 0;
9e24b495 1502
6a0fee04
MD
1503 /*
1504 * Automatic detection of Intel meltdown bug requiring user/kernel
1505 * mmap isolation.
1506 *
1507 * Currently there are so many Intel cpu's impacted that its better
1508 * to whitelist future Intel CPUs. Most? AMD cpus are not impacted
1509 * so the default is off for AMD.
1510 */
94c5f25a 1511 if (meltdown_mitigation < 0) {
d7883524 1512 if (cpu_vendor_id == CPU_VENDOR_INTEL) {
fe9a7b1b
MD
1513 meltdown_mitigation = 1;
1514 if (cpu_ia32_arch_caps & IA32_ARCH_CAP_RDCL_NO)
1515 meltdown_mitigation = 0;
d7883524 1516 } else {
94c5f25a 1517 meltdown_mitigation = 0;
d7883524 1518 }
6a0fee04 1519 }
94c5f25a
MD
1520 if (meltdown_mitigation) {
1521 kprintf("machdep.meltdown_mitigation enabled to "
6a0fee04
MD
1522 "protect against (mostly Intel) meltdown bug\n");
1523 kprintf("system call performance will be impacted\n");
1524 }
1525
9e24b495
MD
1526 pmap_init2_iso_pmap();
1527}
1528
1529/*
1530 * Create the isolation pmap template. Once created, the template
1531 * is static and its PML4e entries are used to populate the
1532 * kernel portion of any isolated user pmaps.
1533 *
1534 * Our isolation pmap must contain:
1535 * (1) trampoline area for all cpus
1536 * (2) common_tss area for all cpus (its part of the trampoline area now)
1537 * (3) IDT for all cpus
1538 * (4) GDT for all cpus
1539 */
1540static void
1541pmap_init2_iso_pmap(void)
1542{
1543 int n;
1544
6a0fee04
MD
1545 if (bootverbose)
1546 kprintf("Initialize isolation pmap\n");
9e24b495
MD
1547
1548 /*
1549 * Try to use our normal API calls to make this easier. We have
1550 * to scrap the shadowed kernel PDPs pmap_pinit() creates for our
1551 * iso_pmap.
1552 */
1553 pmap_pinit(&iso_pmap);
1554 bzero(iso_pmap.pm_pml4, PAGE_SIZE);
1555
1556 /*
1557 * Install areas needed by the cpu and trampoline.
1558 */
1559 for (n = 0; n < ncpus; ++n) {
1560 struct privatespace *ps;
1561
1562 ps = CPU_prvspace[n];
1563 pmap_init_iso_range((vm_offset_t)&ps->trampoline,
1564 sizeof(ps->trampoline));
85b33048
MD
1565 pmap_init_iso_range((vm_offset_t)&ps->dblstack,
1566 sizeof(ps->dblstack));
1567 pmap_init_iso_range((vm_offset_t)&ps->dbgstack,
1568 sizeof(ps->dbgstack));
9e24b495
MD
1569 pmap_init_iso_range((vm_offset_t)&ps->common_tss,
1570 sizeof(ps->common_tss));
1571 pmap_init_iso_range(r_idt_arr[n].rd_base,
1572 r_idt_arr[n].rd_limit + 1);
31815141
MD
1573 pmap_init_iso_range((register_t)ps->mdglobaldata.gd_gdt,
1574 MAXGDT_LIMIT);
9e24b495 1575 }
9e24b495
MD
1576 pmap_init_iso_range((vm_offset_t)(int *)btext,
1577 (vm_offset_t)(int *)etext -
1578 (vm_offset_t)(int *)btext);
1579
1580#if 0
1581 kprintf("Dump iso_pmap:\n");
1582 dump_pmap(&iso_pmap, vtophys(iso_pmap.pm_pml4), 0, 0);
1583 kprintf("\nDump kernel_pmap:\n");
c713db65 1584 dump_pmap(kernel_pmap, vtophys(kernel_pmap->pm_pml4), 0, 0);
9e24b495
MD
1585#endif
1586}
1587
1588/*
1589 * This adds a kernel virtual address range to the isolation pmap.
1590 */
1591static void
1592pmap_init_iso_range(vm_offset_t base, size_t bytes)
1593{
1594 pv_entry_t pv;
1595 pv_entry_t pvp;
1596 pt_entry_t *ptep;
1597 pt_entry_t pte;
1598 vm_offset_t va;
1599
6a0fee04
MD
1600 if (bootverbose) {
1601 kprintf("isolate %016jx-%016jx (%zd)\n",
1602 base, base + bytes, bytes);
1603 }
9e24b495
MD
1604 va = base & ~(vm_offset_t)PAGE_MASK;
1605 while (va < base + bytes) {
1606 if ((va & PDRMASK) == 0 && va + NBPDR <= base + bytes &&
c713db65
AL
1607 (ptep = pmap_pt(kernel_pmap, va)) != NULL &&
1608 (*ptep & kernel_pmap->pmap_bits[PG_V_IDX]) &&
1609 (*ptep & kernel_pmap->pmap_bits[PG_PS_IDX])) {
9e24b495
MD
1610 /*
1611 * Use 2MB pages if possible
1612 */
1613 pte = *ptep;
1614 pv = pmap_allocpte(&iso_pmap, pmap_pd_pindex(va), &pvp);
1615 ptep = pv_pte_lookup(pv, (va >> PDRSHIFT) & 511);
1616 *ptep = pte;
1617 va += NBPDR;
1618 } else {
1619 /*
1620 * Otherwise use 4KB pages
1621 */
1622 pv = pmap_allocpte(&iso_pmap, pmap_pt_pindex(va), &pvp);
1623 ptep = pv_pte_lookup(pv, (va >> PAGE_SHIFT) & 511);
c713db65
AL
1624 *ptep = vtophys(va) | kernel_pmap->pmap_bits[PG_RW_IDX] |
1625 kernel_pmap->pmap_bits[PG_V_IDX] |
1626 kernel_pmap->pmap_bits[PG_A_IDX] |
1627 kernel_pmap->pmap_bits[PG_M_IDX];
9e24b495
MD
1628
1629 va += PAGE_SIZE;
1630 }
1631 pv_put(pv);
1632 pv_put(pvp);
1633 }
1634}
1635
1636#if 0
1637/*
1638 * Useful debugging pmap dumper, do not remove (#if 0 when not in use)
1639 */
1640static
1641void
1642dump_pmap(pmap_t pmap, pt_entry_t pte, int level, vm_offset_t base)
1643{
1644 pt_entry_t *ptp;
1645 vm_offset_t incr;
1646 int i;
1647
1648 switch(level) {
1649 case 0: /* PML4e page, 512G entries */
1650 incr = (1LL << 48) / 512;
1651 break;
1652 case 1: /* PDP page, 1G entries */
1653 incr = (1LL << 39) / 512;
1654 break;
1655 case 2: /* PD page, 2MB entries */
1656 incr = (1LL << 30) / 512;
1657 break;
1658 case 3: /* PT page, 4KB entries */
1659 incr = (1LL << 21) / 512;
1660 break;
1661 default:
1662 incr = 0;
1663 break;
1664 }
1665
1666 if (level == 0)
1667 kprintf("cr3 %016jx @ va=%016jx\n", pte, base);
1668 ptp = (void *)PHYS_TO_DMAP(pte & ~(pt_entry_t)PAGE_MASK);
1669 for (i = 0; i < 512; ++i) {
1670 if (level == 0 && i == 128)
1671 base += 0xFFFF000000000000LLU;
1672 if (ptp[i]) {
1673 kprintf("%*.*s ", level * 4, level * 4, "");
1674 if (level == 1 && (ptp[i] & 0x180) == 0x180) {
1675 kprintf("va=%016jx %3d term %016jx (1GB)\n",
1676 base, i, ptp[i]);
1677 } else if (level == 2 && (ptp[i] & 0x180) == 0x180) {
1678 kprintf("va=%016jx %3d term %016jx (2MB)\n",
1679 base, i, ptp[i]);
1680 } else if (level == 3) {
1681 kprintf("va=%016jx %3d term %016jx\n",
1682 base, i, ptp[i]);
1683 } else {
1684 kprintf("va=%016jx %3d deep %016jx\n",
1685 base, i, ptp[i]);
1686 dump_pmap(pmap, ptp[i], level + 1, base);
1687 }
1688 }
1689 base += incr;
1690 }
d7f50089
YY
1691}
1692
9e24b495
MD
1693#endif
1694
9e5e1578
MD
1695/*
1696 * Typically used to initialize a fictitious page by vm/device_pager.c
1697 */
1698void
1699pmap_page_init(struct vm_page *m)
1700{
1701 vm_page_init(m);
c2830aa6 1702 m->md.interlock_count = 0;
9e5e1578 1703}
c8fe38ae
MD
1704
1705/***************************************************
1706 * Low level helper routines.....
1707 ***************************************************/
1708
d7f50089 1709/*
10d6182e 1710 * Extract the physical page address associated with the map/VA pair.
701c977e 1711 * The page must be wired for this to work reliably.
d7f50089 1712 */
c8fe38ae 1713vm_paddr_t
76f1911e 1714pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
d7f50089 1715{
48ffc236 1716 vm_paddr_t rtval;
701c977e
MD
1717 pv_entry_t pt_pv;
1718 pt_entry_t *ptep;
c8fe38ae 1719
48ffc236 1720 rtval = 0;
701c977e
MD
1721 if (va >= VM_MAX_USER_ADDRESS) {
1722 /*
1723 * Kernel page directories might be direct-mapped and
1724 * there is typically no PV tracking of pte's
1725 */
1726 pd_entry_t *pt;
1727
1728 pt = pmap_pt(pmap, va);
a86ce0cd
MD
1729 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1730 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
701c977e
MD
1731 rtval = *pt & PG_PS_FRAME;
1732 rtval |= va & PDRMASK;
48ffc236 1733 } else {
eb010d6e 1734 ptep = pmap_pt_to_pte(*pt, va);
a86ce0cd 1735 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
701c977e
MD
1736 rtval = *ptep & PG_FRAME;
1737 rtval |= va & PAGE_MASK;
1738 }
1739 }
1740 }
76f1911e
MD
1741 if (handlep)
1742 *handlep = NULL;
701c977e
MD
1743 } else {
1744 /*
1745 * User pages currently do not direct-map the page directory
1746 * and some pages might not used managed PVs. But all PT's
1747 * will have a PV.
1748 */
76f1911e 1749 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
701c977e
MD
1750 if (pt_pv) {
1751 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
a86ce0cd 1752 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
701c977e
MD
1753 rtval = *ptep & PG_FRAME;
1754 rtval |= va & PAGE_MASK;
48ffc236 1755 }
76f1911e
MD
1756 if (handlep)
1757 *handlep = pt_pv; /* locked until done */
1758 else
1759 pv_put (pt_pv);
1760 } else if (handlep) {
1761 *handlep = NULL;
c8fe38ae 1762 }
c8fe38ae 1763 }
48ffc236
JG
1764 return rtval;
1765}
1766
76f1911e
MD
1767void
1768pmap_extract_done(void *handle)
1769{
1770 if (handle)
1771 pv_put((pv_entry_t)handle);
1772}
1773
a86ce0cd
MD
1774/*
1775 * Similar to extract but checks protections, SMP-friendly short-cut for
1776 * vm_fault_page[_quick](). Can return NULL to cause the caller to
dc039ae0
MD
1777 * fall-through to the real fault code. Does not work with HVM page
1778 * tables.
a86ce0cd 1779 *
08abdbfc
MD
1780 * if busyp is NULL the returned page, if not NULL, is held (and not busied).
1781 *
1782 * If busyp is not NULL and this function sets *busyp non-zero, the returned
1783 * page is busied (and not held).
1784 *
1785 * If busyp is not NULL and this function sets *busyp to zero, the returned
1786 * page is held (and not busied).
1787 *
7a45978d
MD
1788 * If VM_PROT_WRITE is set in prot, and the pte is already writable, the
1789 * returned page will be dirtied. If the pte is not already writable NULL
1790 * is returned. In otherwords, if the bit is set and a vm_page_t is returned,
1791 * any COW will already have happened and that page can be written by the
1792 * caller.
a36803d2
MD
1793 *
1794 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1795 * OR WRITING AS-IS.
a86ce0cd
MD
1796 */
1797vm_page_t
dc039ae0 1798pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
a86ce0cd 1799{
dc039ae0
MD
1800 if (pmap &&
1801 va < VM_MAX_USER_ADDRESS &&
1802 (pmap->pm_flags & PMAP_HVM) == 0) {
a86ce0cd
MD
1803 pv_entry_t pt_pv;
1804 pv_entry_t pte_pv;
1805 pt_entry_t *ptep;
1806 pt_entry_t req;
1807 vm_page_t m;
1808 int error;
1809
1810 req = pmap->pmap_bits[PG_V_IDX] |
1811 pmap->pmap_bits[PG_U_IDX];
7a45978d 1812 if (prot & VM_PROT_WRITE)
a86ce0cd
MD
1813 req |= pmap->pmap_bits[PG_RW_IDX];
1814
76f1911e 1815 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
a86ce0cd
MD
1816 if (pt_pv == NULL)
1817 return (NULL);
1818 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1819 if ((*ptep & req) != req) {
76f1911e 1820 pv_put(pt_pv);
a86ce0cd
MD
1821 return (NULL);
1822 }
76f1911e 1823 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
a86ce0cd
MD
1824 if (pte_pv && error == 0) {
1825 m = pte_pv->pv_m;
7a45978d 1826 if (prot & VM_PROT_WRITE) {
dc039ae0 1827 /* interlocked by presence of pv_entry */
a86ce0cd 1828 vm_page_dirty(m);
dc039ae0
MD
1829 }
1830 if (busyp) {
1831 if (prot & VM_PROT_WRITE) {
1832 if (vm_page_busy_try(m, TRUE))
1833 m = NULL;
1834 *busyp = 1;
1835 } else {
1836 vm_page_hold(m);
1837 *busyp = 0;
1838 }
1839 } else {
1840 vm_page_hold(m);
1841 }
a86ce0cd
MD
1842 pv_put(pte_pv);
1843 } else if (pte_pv) {
1844 pv_drop(pte_pv);
1845 m = NULL;
1846 } else {
e989b548 1847 /* error, since we didn't request a placemarker */
a86ce0cd
MD
1848 m = NULL;
1849 }
76f1911e 1850 pv_put(pt_pv);
a86ce0cd
MD
1851 return(m);
1852 } else {
1853 return(NULL);
1854 }
1855}
1856
48ffc236 1857/*
10d6182e 1858 * Extract the physical page address associated kernel virtual address.
48ffc236
JG
1859 */
1860vm_paddr_t
1861pmap_kextract(vm_offset_t va)
48ffc236 1862{
701c977e 1863 pd_entry_t pt; /* pt entry in pd */
48ffc236
JG
1864 vm_paddr_t pa;
1865
1866 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1867 pa = DMAP_TO_PHYS(va);
1868 } else {
701c977e 1869 pt = *vtopt(va);
c713db65 1870 if (pt & kernel_pmap->pmap_bits[PG_PS_IDX]) {
701c977e 1871 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
48ffc236
JG
1872 } else {
1873 /*
1874 * Beware of a concurrent promotion that changes the
1875 * PDE at this point! For example, vtopte() must not
1876 * be used to access the PTE because it would use the
1877 * new PDE. It is, however, safe to use the old PDE
1878 * because the page table page is preserved by the
1879 * promotion.
1880 */
eb010d6e 1881 pa = *pmap_pt_to_pte(pt, va);
48ffc236
JG
1882 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1883 }
1884 }
1885 return pa;
d7f50089
YY
1886}
1887
c8fe38ae
MD
1888/***************************************************
1889 * Low level mapping routines.....
1890 ***************************************************/
1891
d7f50089 1892/*
737b020b 1893 * Add a wired page to the KVA and invalidate the mapping on all CPUs.
d7f50089 1894 */
737b020b 1895void
d7f50089
YY
1896pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1897{
79f2da03 1898 pt_entry_t *ptep;
c8fe38ae 1899 pt_entry_t npte;
c8fe38ae 1900
a86ce0cd 1901 npte = pa |
c713db65
AL
1902 kernel_pmap->pmap_bits[PG_RW_IDX] |
1903 kernel_pmap->pmap_bits[PG_V_IDX];
e989b548 1904// pgeflag;
79f2da03 1905 ptep = vtopte(va);
1af05cbf 1906#if 1
c713db65 1907 pmap_inval_smp(kernel_pmap, va, 1, ptep, npte);
1af05cbf
MD
1908#else
1909 /* FUTURE */
79f2da03 1910 if (*ptep)
c713db65 1911 pmap_inval_smp(kernel_pmap, va, ptep, npte);
79f2da03
MD
1912 else
1913 *ptep = npte;
1af05cbf 1914#endif
d7f50089
YY
1915}
1916
1917/*
79f2da03
MD
1918 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1919 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1920 * (caller can conditionalize calling smp_invltlb()).
d7f50089 1921 */
79f2da03 1922int
c8fe38ae
MD
1923pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1924{
79f2da03 1925 pt_entry_t *ptep;
c8fe38ae 1926 pt_entry_t npte;
79f2da03 1927 int res;
c8fe38ae 1928
c713db65
AL
1929 npte = pa | kernel_pmap->pmap_bits[PG_RW_IDX] |
1930 kernel_pmap->pmap_bits[PG_V_IDX];
76f1911e 1931 // npte |= pgeflag;
79f2da03 1932 ptep = vtopte(va);
1af05cbf
MD
1933#if 1
1934 res = 1;
1935#else
1936 /* FUTURE */
79f2da03 1937 res = (*ptep != 0);
1af05cbf 1938#endif
76f1911e 1939 atomic_swap_long(ptep, npte);
c8fe38ae 1940 cpu_invlpg((void *)va);
c8fe38ae 1941
79f2da03 1942 return res;
d7f50089
YY
1943}
1944
ccd67bf6
MD
1945/*
1946 * Enter addresses into the kernel pmap but don't bother
1947 * doing any tlb invalidations. Caller will do a rollup
1948 * invalidation via pmap_rollup_inval().
1949 */
1950int
1951pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1952{
1953 pt_entry_t *ptep;
1954 pt_entry_t npte;
1955 int res;
1956
1957 npte = pa |
c713db65
AL
1958 kernel_pmap->pmap_bits[PG_RW_IDX] |
1959 kernel_pmap->pmap_bits[PG_V_IDX];
ccd67bf6
MD
1960// pgeflag;
1961 ptep = vtopte(va);
1962#if 1
1963 res = 1;
1964#else
1965 /* FUTURE */
1966 res = (*ptep != 0);
1967#endif
76f1911e 1968 atomic_swap_long(ptep, npte);
ccd67bf6
MD
1969 cpu_invlpg((void *)va);
1970
1971 return res;
1972}
1973
d7f50089 1974/*
c8fe38ae 1975 * remove a page from the kernel pagetables
d7f50089
YY
1976 */
1977void
c8fe38ae 1978pmap_kremove(vm_offset_t va)
d7f50089 1979{
79f2da03 1980 pt_entry_t *ptep;
c8fe38ae 1981
79f2da03 1982 ptep = vtopte(va);
c713db65 1983 pmap_inval_smp(kernel_pmap, va, 1, ptep, 0);
c8fe38ae
MD
1984}
1985
1986void
1987pmap_kremove_quick(vm_offset_t va)
1988{
79f2da03
MD
1989 pt_entry_t *ptep;
1990
1991 ptep = vtopte(va);
8078b160 1992 atomic_readandclear_long(ptep);
c8fe38ae 1993 cpu_invlpg((void *)va);
d7f50089
YY
1994}
1995
ccd67bf6
MD
1996/*
1997 * Remove addresses from the kernel pmap but don't bother
1998 * doing any tlb invalidations. Caller will do a rollup
1999 * invalidation via pmap_rollup_inval().
2000 */
2001void
2002pmap_kremove_noinval(vm_offset_t va)
2003{
2004 pt_entry_t *ptep;
2005
2006 ptep = vtopte(va);
8078b160 2007 atomic_readandclear_long(ptep);
ccd67bf6
MD
2008}
2009
d7f50089 2010/*
c8fe38ae 2011 * XXX these need to be recoded. They are not used in any critical path.
d7f50089
YY
2012 */
2013void
c8fe38ae 2014pmap_kmodify_rw(vm_offset_t va)
d7f50089 2015{
c713db65 2016 atomic_set_long(vtopte(va), kernel_pmap->pmap_bits[PG_RW_IDX]);
c8fe38ae 2017 cpu_invlpg((void *)va);
d7f50089
YY
2018}
2019
a86ce0cd 2020/* NOT USED
c8fe38ae
MD
2021void
2022pmap_kmodify_nc(vm_offset_t va)
2023{
701c977e 2024 atomic_set_long(vtopte(va), PG_N);
c8fe38ae
MD
2025 cpu_invlpg((void *)va);
2026}
a86ce0cd 2027*/
d7f50089
YY
2028
2029/*
ad54aa11
MD
2030 * Used to map a range of physical addresses into kernel virtual
2031 * address space during the low level boot, typically to map the
2032 * dump bitmap, message buffer, and vm_page_array.
c8fe38ae 2033 *
ad54aa11
MD
2034 * These mappings are typically made at some pointer after the end of the
2035 * kernel text+data.
2036 *
2037 * We could return PHYS_TO_DMAP(start) here and not allocate any
2038 * via (*virtp), but then kmem from userland and kernel dumps won't
2039 * have access to the related pointers.
d7f50089
YY
2040 */
2041vm_offset_t
8e5e6f1b 2042pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
d7f50089 2043{
ad54aa11
MD
2044 vm_offset_t va;
2045 vm_offset_t va_start;
2046
2047 /*return PHYS_TO_DMAP(start);*/
2048
2049 va_start = *virtp;
2050 va = va_start;
2051
2052 while (start < end) {
2053 pmap_kenter_quick(va, start);
2054 va += PAGE_SIZE;
2055 start += PAGE_SIZE;
2056 }
2057 *virtp = va;
2058 return va_start;
d7f50089
YY
2059}
2060
c174861d
FT
2061#define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
2062
2063/*
2064 * Remove the specified set of pages from the data and instruction caches.
2065 *
2066 * In contrast to pmap_invalidate_cache_range(), this function does not
2067 * rely on the CPU's self-snoop feature, because it is intended for use
2068 * when moving pages into a different cache domain.
2069 */
2070void
2071pmap_invalidate_cache_pages(vm_page_t *pages, int count)
2072{
2073 vm_offset_t daddr, eva;
2074 int i;
2075
2076 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
2077 (cpu_feature & CPUID_CLFSH) == 0)
2078 wbinvd();
2079 else {
2080 cpu_mfence();
2081 for (i = 0; i < count; i++) {
2082 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
2083 eva = daddr + PAGE_SIZE;
2084 for (; daddr < eva; daddr += cpu_clflush_line_size)
2085 clflush(daddr);
2086 }
2087 cpu_mfence();
2088 }
2089}
2090
300a6373
JH
2091void
2092pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
2093{
fd300b3d
FT
2094 KASSERT((sva & PAGE_MASK) == 0,
2095 ("pmap_invalidate_cache_range: sva not page-aligned"));
2096 KASSERT((eva & PAGE_MASK) == 0,
2097 ("pmap_invalidate_cache_range: eva not page-aligned"));
2098
2099 if (cpu_feature & CPUID_SS) {
2100 ; /* If "Self Snoop" is supported, do nothing. */
2101 } else {
2102 /* Globally invalidate caches */
2103 cpu_wbinvd_on_all_cpus();
2104 }
300a6373 2105}
ccd67bf6
MD
2106
2107/*
2108 * Invalidate the specified range of virtual memory on all cpus associated
2109 * with the pmap.
2110 */
300a6373
JH
2111void
2112pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2113{
ccd67bf6 2114 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
300a6373 2115}
c8fe38ae 2116
d7f50089 2117/*
d0f59917
MD
2118 * Add a list of wired pages to the kva. This routine is used for temporary
2119 * kernel mappings such as those found in buffer cache buffer. Page
2120 * modifications and accesses are not tracked or recorded.
2121 *
2122 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
2123 * semantics as previous mappings may have been zerod without any
2124 * invalidation.
2125 *
2126 * The page *must* be wired.
d7f50089 2127 */
f3bd2fce
MD
2128static __inline void
2129_pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
d7f50089 2130{
c8fe38ae 2131 vm_offset_t end_va;
ccd67bf6 2132 vm_offset_t va;
c8fe38ae 2133
ccd67bf6
MD
2134 end_va = beg_va + count * PAGE_SIZE;
2135
2136 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
76f1911e
MD
2137 pt_entry_t pte;
2138 pt_entry_t *ptep;
c8fe38ae 2139
76f1911e
MD
2140 ptep = vtopte(va);
2141 pte = VM_PAGE_TO_PHYS(*m) |
c713db65
AL
2142 kernel_pmap->pmap_bits[PG_RW_IDX] |
2143 kernel_pmap->pmap_bits[PG_V_IDX] |
2144 kernel_pmap->pmap_cache_bits_pte[(*m)->pat_mode];
a86ce0cd 2145// pgeflag;
76f1911e 2146 atomic_swap_long(ptep, pte);
c8fe38ae
MD
2147 m++;
2148 }
f3bd2fce 2149 if (doinval)
c713db65 2150 pmap_invalidate_range(kernel_pmap, beg_va, end_va);
f3bd2fce
MD
2151}
2152
2153void
2154pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
2155{
2156 _pmap_qenter(beg_va, m, count, 1);
2157}
2158
2159void
2160pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
2161{
2162 _pmap_qenter(beg_va, m, count, 0);
c8fe38ae
MD
2163}
2164
d7f50089 2165/*
d0f59917
MD
2166 * This routine jerks page mappings from the kernel -- it is meant only
2167 * for temporary mappings such as those found in buffer cache buffers.
2168 * No recording modified or access status occurs.
7155fc7d
MD
2169 *
2170 * MPSAFE, INTERRUPT SAFE (cluster callback)
d7f50089 2171 */
c8fe38ae 2172void
d0f59917 2173pmap_qremove(vm_offset_t beg_va, int count)
d7f50089 2174{
c8fe38ae 2175 vm_offset_t end_va;
d0f59917 2176 vm_offset_t va;
c8fe38ae 2177
d0f59917 2178 end_va = beg_va + count * PAGE_SIZE;
c8fe38ae 2179
d0f59917 2180 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
c8fe38ae
MD
2181 pt_entry_t *pte;
2182
2183 pte = vtopte(va);
8078b160 2184 atomic_readandclear_long(pte);
c8fe38ae 2185 cpu_invlpg((void *)va);
c8fe38ae 2186 }
c713db65 2187 pmap_invalidate_range(kernel_pmap, beg_va, end_va);
d0f59917
MD
2188}
2189
2190/*
2191 * This routine removes temporary kernel mappings, only invalidating them
2192 * on the current cpu. It should only be used under carefully controlled
2193 * conditions.
2194 */
2195void
2196pmap_qremove_quick(vm_offset_t beg_va, int count)
2197{
2198 vm_offset_t end_va;
2199 vm_offset_t va;
2200
2201 end_va = beg_va + count * PAGE_SIZE;
2202
2203 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2204 pt_entry_t *pte;
2205
2206 pte = vtopte(va);
8078b160 2207 atomic_readandclear_long(pte);
d0f59917
MD
2208 cpu_invlpg((void *)va);
2209 }
2210}
2211
2212/*
2213 * This routine removes temporary kernel mappings *without* invalidating
2214 * the TLB. It can only be used on permanent kva reservations such as those
2215 * found in buffer cache buffers, under carefully controlled circumstances.
2216 *
2217 * NOTE: Repopulating these KVAs requires unconditional invalidation.
2218 * (pmap_qenter() does unconditional invalidation).
2219 */
2220void
2221pmap_qremove_noinval(vm_offset_t beg_va, int count)
2222{
2223 vm_offset_t end_va;
2224 vm_offset_t va;
2225
2226 end_va = beg_va + count * PAGE_SIZE;
2227
2228 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
2229 pt_entry_t *pte;
2230
2231 pte = vtopte(va);
8078b160 2232 atomic_readandclear_long(pte);
d0f59917 2233 }
d7f50089
YY
2234}
2235
d7f50089 2236/*
c8fe38ae
MD
2237 * Create a new thread and optionally associate it with a (new) process.
2238 * NOTE! the new thread's cpu may not equal the current cpu.
d7f50089
YY
2239 */
2240void
c8fe38ae 2241pmap_init_thread(thread_t td)
d7f50089 2242{
d1368d1a 2243 /* enforce pcb placement & alignment */
c8fe38ae 2244 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
d1368d1a 2245 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
c8fe38ae 2246 td->td_savefpu = &td->td_pcb->pcb_save;
d1368d1a 2247 td->td_sp = (char *)td->td_pcb; /* no -16 */
d7f50089
YY
2248}
2249
2250/*
c8fe38ae 2251 * This routine directly affects the fork perf for a process.
d7f50089
YY
2252 */
2253void
c8fe38ae 2254pmap_init_proc(struct proc *p)
d7f50089
YY
2255{
2256}
2257
a86ce0cd 2258static void
8e2efb11
MD
2259pmap_pinit_defaults(struct pmap *pmap)
2260{
2261 bcopy(pmap_bits_default, pmap->pmap_bits,
2262 sizeof(pmap_bits_default));
2263 bcopy(protection_codes, pmap->protection_codes,
2264 sizeof(protection_codes));
c2ec3418 2265 bcopy(pat_pte_index, pmap->pmap_cache_bits_pte,
8e2efb11 2266 sizeof(pat_pte_index));
c2ec3418
MD
2267 bcopy(pat_pde_index, pmap->pmap_cache_bits_pde,
2268 sizeof(pat_pte_index));
2269 pmap->pmap_cache_mask_pte = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
2270 pmap->pmap_cache_mask_pde = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PDE_PAT;
a86ce0cd
MD
2271 pmap->copyinstr = std_copyinstr;
2272 pmap->copyin = std_copyin;
2273 pmap->copyout = std_copyout;
2274 pmap->fubyte = std_fubyte;
2275 pmap->subyte = std_subyte;
5947157e
MD
2276 pmap->fuword32 = std_fuword32;
2277 pmap->fuword64 = std_fuword64;
a86ce0cd 2278 pmap->suword32 = std_suword32;
7f4bfbe7
MD
2279 pmap->suword64 = std_suword64;
2280 pmap->swapu32 = std_swapu32;
2281 pmap->swapu64 = std_swapu64;
6481baf4
MD
2282 pmap->fuwordadd32 = std_fuwordadd32;
2283 pmap->fuwordadd64 = std_fuwordadd64;
a86ce0cd 2284}
9bbbdb7e 2285
d7f50089 2286/*
73b1bfb1 2287 * Initialize pmap0/vmspace0.
c8fe38ae
MD
2288 *
2289 * On architectures where the kernel pmap is not integrated into the user
2290 * process pmap, this pmap represents the process pmap, not the kernel pmap.
2291 * kernel_pmap should be used to directly access the kernel_pmap.
d7f50089
YY
2292 */
2293void
c8fe38ae 2294pmap_pinit0(struct pmap *pmap)
d7f50089 2295{
76f1911e
MD
2296 int i;
2297
48ffc236 2298 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
c8fe38ae 2299 pmap->pm_count = 1;
c07315c4 2300 CPUMASK_ASSZERO(pmap->pm_active);
bb1339f8 2301 pmap->pm_pvhint_pt = NULL;
567a6398 2302 pmap->pm_pvhint_unused = NULL;
701c977e 2303 RB_INIT(&pmap->pm_pvroot);
ba87a4ab 2304 spin_init(&pmap->pm_spin, "pmapinit0");
76f1911e
MD
2305 for (i = 0; i < PM_PLACEMARKS; ++i)
2306 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
c8fe38ae 2307 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
a86ce0cd 2308 pmap_pinit_defaults(pmap);
d7f50089
YY
2309}
2310
2311/*
c8fe38ae
MD
2312 * Initialize a preallocated and zeroed pmap structure,
2313 * such as one in a vmspace structure.
d7f50089 2314 */
921c891e
MD
2315static void
2316pmap_pinit_simple(struct pmap *pmap)
d7f50089 2317{
76f1911e
MD
2318 int i;
2319
701c977e
MD
2320 /*
2321 * Misc initialization
2322 */
2323 pmap->pm_count = 1;
c07315c4 2324 CPUMASK_ASSZERO(pmap->pm_active);
bb1339f8 2325 pmap->pm_pvhint_pt = NULL;
567a6398 2326 pmap->pm_pvhint_unused = NULL;
921c891e
MD
2327 pmap->pm_flags = PMAP_FLAG_SIMPLE;
2328
a86ce0cd
MD
2329 pmap_pinit_defaults(pmap);
2330
921c891e
MD
2331 /*
2332 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
2333 * for this).
2334 */
701c977e
MD
2335 if (pmap->pm_pmlpv == NULL) {
2336 RB_INIT(&pmap->pm_pvroot);
2337 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
ba87a4ab 2338 spin_init(&pmap->pm_spin, "pmapinitsimple");
76f1911e
MD
2339 for (i = 0; i < PM_PLACEMARKS; ++i)
2340 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
701c977e 2341 }
921c891e
MD
2342}
2343
2344void
2345pmap_pinit(struct pmap *pmap)
2346{
2347 pv_entry_t pv;
2348 int j;
2349
a86ce0cd 2350 if (pmap->pm_pmlpv) {
6379cf29 2351 /* Completely clear the cached pmap if not REGULAR_PMAP. */
a86ce0cd
MD
2352 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
2353 pmap_puninit(pmap);
2354 }
2355 }
2356
921c891e
MD
2357 pmap_pinit_simple(pmap);
2358 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
c8fe38ae
MD
2359
2360 /*
2361 * No need to allocate page table space yet but we do need a valid
2362 * page directory table.
2363 */
48ffc236
JG
2364 if (pmap->pm_pml4 == NULL) {
2365 pmap->pm_pml4 =
1eeaf6b2 2366 (pml4_entry_t *)kmem_alloc_pageable(kernel_map,
4611d87f 2367 PAGE_SIZE * 2,
3091de50 2368 VM_SUBSYS_PML4);
4611d87f 2369 pmap->pm_pml4_iso = (void *)((char *)pmap->pm_pml4 + PAGE_SIZE);
c8fe38ae
MD
2370 }
2371
2372 /*
4611d87f
MD
2373 * Allocate the PML4e table, which wires it even though it isn't
2374 * being entered into some higher level page table (it being the
2375 * highest level). If one is already cached we don't have to do
2376 * anything.
c8fe38ae 2377 */
701c977e
MD
2378 if ((pv = pmap->pm_pmlpv) == NULL) {
2379 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2380 pmap->pm_pmlpv = pv;
b12defdc 2381 pmap_kenter((vm_offset_t)pmap->pm_pml4,
701c977e
MD
2382 VM_PAGE_TO_PHYS(pv->pv_m));
2383 pv_put(pv);
33fb3ba1
MD
2384
2385 /*
2386 * Install DMAP and KMAP.
2387 */
2388 for (j = 0; j < NDMPML4E; ++j) {
2389 pmap->pm_pml4[DMPML4I + j] =
f70051b1 2390 (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
a86ce0cd
MD
2391 pmap->pmap_bits[PG_RW_IDX] |
2392 pmap->pmap_bits[PG_V_IDX] |
9e24b495 2393 pmap->pmap_bits[PG_A_IDX];
33fb3ba1 2394 }
8ff9866b
MD
2395 for (j = 0; j < NKPML4E; ++j) {
2396 pmap->pm_pml4[KPML4I + j] =
2397 (KPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2398 pmap->pmap_bits[PG_RW_IDX] |
2399 pmap->pmap_bits[PG_V_IDX] |
9e24b495 2400 pmap->pmap_bits[PG_A_IDX];
8ff9866b 2401 }
701c977e 2402
33fb3ba1
MD
2403 /*
2404 * install self-referential address mapping entry
2405 */
701c977e 2406 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
a86ce0cd
MD
2407 pmap->pmap_bits[PG_V_IDX] |
2408 pmap->pmap_bits[PG_RW_IDX] |
9e24b495 2409 pmap->pmap_bits[PG_A_IDX];
701c977e
MD
2410 } else {
2411 KKASSERT(pv->pv_m->flags & PG_MAPPED);
2412 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
b12defdc 2413 }
993bac44 2414 KKASSERT(pmap->pm_pml4[255] == 0);
4611d87f
MD
2415
2416 /*
2417 * When implementing an isolated userland pmap, a second PML4e table
2418 * is needed. We use pmap_pml4_pindex() + 1 for convenience, but
2419 * note that we do not operate on this table using our API functions
2420 * so handling of the + 1 case is mostly just to prevent implosions.
9e24b495
MD
2421 *
2422 * We install an isolated version of the kernel PDPs into this
2423 * second PML4e table. The pmap code will mirror all user PDPs
2424 * between the primary and secondary PML4e table.
4611d87f 2425 */
94c5f25a 2426 if ((pv = pmap->pm_pmlpv_iso) == NULL && meltdown_mitigation &&
9e24b495 2427 pmap != &iso_pmap) {
4611d87f
MD
2428 pv = pmap_allocpte(pmap, pmap_pml4_pindex() + 1, NULL);
2429 pmap->pm_pmlpv_iso = pv;
2430 pmap_kenter((vm_offset_t)pmap->pm_pml4_iso,
2431 VM_PAGE_TO_PHYS(pv->pv_m));
2432 pv_put(pv);
2433
2434 /*
9e24b495
MD
2435 * Install an isolated version of the kernel pmap for
2436 * user consumption, using PDPs constructed in iso_pmap.
4611d87f
MD
2437 */
2438 for (j = 0; j < NKPML4E; ++j) {
2439 pmap->pm_pml4_iso[KPML4I + j] =
9e24b495 2440 iso_pmap.pm_pml4[KPML4I + j];
4611d87f 2441 }
4611d87f
MD
2442 } else if (pv) {
2443 KKASSERT(pv->pv_m->flags & PG_MAPPED);
2444 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2445 }
d7f50089
YY
2446}
2447
2448/*
c8fe38ae
MD
2449 * Clean up a pmap structure so it can be physically freed. This routine
2450 * is called by the vmspace dtor function. A great deal of pmap data is
2451 * left passively mapped to improve vmspace management so we have a bit
2452 * of cleanup work to do here.
d7f50089
YY
2453 */
2454void
c8fe38ae 2455pmap_puninit(pmap_t pmap)
d7f50089 2456{
701c977e 2457 pv_entry_t pv;
c8fe38ae
MD
2458 vm_page_t p;
2459
c07315c4 2460 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
701c977e
MD
2461 if ((pv = pmap->pm_pmlpv) != NULL) {
2462 if (pv_hold_try(pv) == 0)
2463 pv_lock(pv);
8e2efb11 2464 KKASSERT(pv == pmap->pm_pmlpv);
c2830aa6 2465 p = pmap_remove_pv_page(pv, 1);
76f1911e 2466 pv_free(pv, NULL);
a7a03a5f 2467 pv = NULL; /* safety */
48ffc236 2468 pmap_kremove((vm_offset_t)pmap->pm_pml4);
b12defdc 2469 vm_page_busy_wait(p, FALSE, "pgpun");
831a8507 2470 KKASSERT(p->flags & PG_UNQUEUED);
b12defdc 2471 vm_page_unwire(p, 0);
701c977e 2472 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
701c977e
MD
2473 vm_page_free(p);
2474 pmap->pm_pmlpv = NULL;
c8fe38ae 2475 }
4611d87f
MD
2476 if ((pv = pmap->pm_pmlpv_iso) != NULL) {
2477 if (pv_hold_try(pv) == 0)
2478 pv_lock(pv);
2479 KKASSERT(pv == pmap->pm_pmlpv_iso);
c2830aa6 2480 p = pmap_remove_pv_page(pv, 1);
4611d87f
MD
2481 pv_free(pv, NULL);
2482 pv = NULL; /* safety */
2483 pmap_kremove((vm_offset_t)pmap->pm_pml4_iso);
2484 vm_page_busy_wait(p, FALSE, "pgpun");
831a8507 2485 KKASSERT(p->flags & PG_UNQUEUED);
4611d87f
MD
2486 vm_page_unwire(p, 0);
2487 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2488 vm_page_free(p);
2489 pmap->pm_pmlpv_iso = NULL;
2490 }
48ffc236 2491 if (pmap->pm_pml4) {
bfc09ba0 2492 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1eeaf6b2 2493 kmem_free(kernel_map,
4611d87f 2494 (vm_offset_t)pmap->pm_pml4, PAGE_SIZE * 2);
48ffc236 2495 pmap->pm_pml4 = NULL;
4611d87f 2496 pmap->pm_pml4_iso = NULL;
c8fe38ae 2497 }
701c977e
MD
2498 KKASSERT(pmap->pm_stats.resident_count == 0);
2499 KKASSERT(pmap->pm_stats.wired_count == 0);
d7f50089
YY
2500}
2501
2502/*
73b1bfb1 2503 * This function is now unused (used to add the pmap to the pmap_list)
d7f50089
YY
2504 */
2505void
c8fe38ae 2506pmap_pinit2(struct pmap *pmap)
d7f50089
YY
2507{
2508}
2509
29701988
AL
2510/*
2511 * Transform an initialized pmap for Intel EPT.
2512 */
2513void
2514pmap_ept_transform(pmap_t pmap, int flags)
2515{
2516 uint64_t pmap_bits_ept[PG_BITS_SIZE] = {
2517 [TYPE_IDX] = EPT_PMAP,
2518 [PG_V_IDX] = EPT_PG_READ | EPT_PG_EXECUTE,
2519 [PG_RW_IDX] = EPT_PG_WRITE,
2520 [PG_U_IDX] = 0, /* no support in EPT */
2521 [PG_A_IDX] = EPT_PG_A,
2522 [PG_M_IDX] = EPT_PG_M,
2523 [PG_PS_IDX] = EPT_PG_PS,
2524 [PG_G_IDX] = 0, /* no support in EPT */
2525 [PG_W_IDX] = EPT_PG_AVAIL1,
2526 [PG_MANAGED_IDX] = EPT_PG_AVAIL2,
2527 [PG_N_IDX] = EPT_PG_IGNORE_PAT | EPT_MEM_TYPE_UC,
2528 [PG_NX_IDX] = 0, /* no support in EPT */
2529 };
2530 uint64_t protection_codes_ept[PROTECTION_CODES_SIZE] = {
2531 [VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE ] = 0,
2532 [VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE ] = 0,
2533 [VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE] = 0,
2534 [VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE] = 0,
2535 [VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE ] =
2536 pmap_bits_ept[PG_RW_IDX],
2537 [VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE] =
2538 pmap_bits_ept[PG_RW_IDX],
2539 [VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE ] =
2540 pmap_bits_ept[PG_RW_IDX],
2541 [VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE] =
2542 pmap_bits_ept[PG_RW_IDX],
2543 };
2544 pt_entry_t pmap_cache_bits_ept[PAT_INDEX_SIZE] = {
2545 [PAT_UNCACHEABLE] = EPT_PG_IGNORE_PAT | EPT_MEM_TYPE_UC,
2546 [PAT_WRITE_COMBINING] = EPT_PG_IGNORE_PAT | EPT_MEM_TYPE_WC,
2547 [PAT_WRITE_THROUGH] = EPT_PG_IGNORE_PAT | EPT_MEM_TYPE_WT,
2548 [PAT_WRITE_PROTECTED] = EPT_PG_IGNORE_PAT | EPT_MEM_TYPE_WP,
2549 [PAT_WRITE_BACK] = EPT_PG_IGNORE_PAT | EPT_MEM_TYPE_WB,
2550 [PAT_UNCACHED] = EPT_PG_IGNORE_PAT | EPT_MEM_TYPE_UC,
2551 };
2552 pt_entry_t pmap_cache_mask_ept = EPT_PG_IGNORE_PAT | EPT_MEM_TYPE_MASK;
2553
2554 pmap->pm_flags |= (flags | PMAP_HVM);
2555 bcopy(pmap_bits_ept, pmap->pmap_bits, sizeof(pmap_bits_ept));
2556 bcopy(protection_codes_ept, pmap->protection_codes,
2557 sizeof(protection_codes_ept));
2558 bcopy(pmap_cache_bits_ept, pmap->pmap_cache_bits_pte,
2559 sizeof(pmap_cache_bits_ept));
2560 bcopy(pmap_cache_bits_ept, pmap->pmap_cache_bits_pde,
2561 sizeof(pmap_cache_bits_ept));
2562 pmap->pmap_cache_mask_pte = pmap_cache_mask_ept;
2563 pmap->pmap_cache_mask_pde = pmap_cache_mask_ept;
2564
2565 /*
2566 * Zero out page directories. These are only used by the VM. Note
2567 * that the valid area is two pages if there is a pm_pmlpv_iso PTE
2568 * installed, otherwise it is only one page. The ISO page isn't used
2569 * either way but clean it out anyway if it exists.
2570 */
2571 if (pmap->pm_pmlpv_iso != NULL)
2572 bzero(pmap->pm_pml4, PAGE_SIZE * 2);
2573 else
2574 bzero(pmap->pm_pml4, PAGE_SIZE);
2575}
2576
bb11cce6
AL
2577/*
2578 * Transform an initialized pmap for AMD NPT/RVI.
2579 */
2580void
2581pmap_npt_transform(pmap_t pmap, int flags)
2582{
2583 uint64_t protection_codes_npt[PROTECTION_CODES_SIZE] = {
2584 [VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE ] = 0,
2585 [VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE ] = 0,
2586 [VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE] = 0,
2587 [VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE] = 0,
2588 [VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE ] =
2589 pmap_bits_default[PG_RW_IDX],
2590 [VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE] =
2591 pmap_bits_default[PG_RW_IDX],
2592 [VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE ] =
2593 pmap_bits_default[PG_RW_IDX],
2594 [VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE] =
2595 pmap_bits_default[PG_RW_IDX],
2596 };
2597
2598 pmap->pm_flags |= (flags | PMAP_HVM);
2599 pmap->pmap_bits[TYPE_IDX] = NPT_PMAP;
2600 /* Set PG_G and PG_NX bits to 0, similar to the EPT case above. */
2601 pmap->pmap_bits[PG_G_IDX] = 0;
2602 pmap->pmap_bits[PG_NX_IDX] = 0;
2603
2604 bcopy(protection_codes_npt, pmap->protection_codes,
2605 sizeof(protection_codes_npt));
2606
2607 if (pmap->pm_pmlpv_iso != NULL)
2608 bzero(pmap->pm_pml4, PAGE_SIZE * 2);
2609 else
2610 bzero(pmap->pm_pml4, PAGE_SIZE);
2611}
2612
d7f50089 2613/*
701c977e
MD
2614 * This routine is called when various levels in the page table need to
2615 * be populated. This routine cannot fail.
d7f50089 2616 *
701c977e
MD
2617 * This function returns two locked pv_entry's, one representing the
2618 * requested pv and one representing the requested pv's parent pv. If
a7a03a5f
MD
2619 * an intermediate page table does not exist it will be created, mapped,
2620 * wired, and the parent page table will be given an additional hold
2621 * count representing the presence of the child pv_entry.
d7f50089 2622 */
bfc09ba0 2623static
701c977e
MD
2624pv_entry_t
2625pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
d7f50089 2626{
701c977e 2627 pt_entry_t *ptep;
4611d87f 2628 pt_entry_t *ptep_iso;
701c977e
MD
2629 pv_entry_t pv;
2630 pv_entry_t pvp;
76f1911e 2631 pt_entry_t v;
701c977e
MD
2632 vm_page_t m;
2633 int isnew;
921c891e 2634 int ispt;
701c977e 2635
c8fe38ae 2636 /*
701c977e
MD
2637 * If the pv already exists and we aren't being asked for the
2638 * parent page table page we can just return it. A locked+held pv
8e2efb11
MD
2639 * is returned. The pv will also have a second hold related to the
2640 * pmap association that we don't have to worry about.
c8fe38ae 2641 */
921c891e 2642 ispt = 0;
701c977e
MD
2643 pv = pv_alloc(pmap, ptepindex, &isnew);
2644 if (isnew == 0 && pvpp == NULL)
2645 return(pv);
2646
701c977e 2647 /*
567a6398 2648 * DragonFly doesn't use PV's to represent terminal PTEs any more.
0600465e
MD
2649 * The index range is still used for placemarkers, but not for
2650 * actual pv_entry's.
701c977e 2651 */
567a6398 2652 KKASSERT(ptepindex >= pmap_pt_pindex(0));
567a6398
MD
2653
2654 /*
2655 * Note that pt_pv's are only returned for user VAs. We assert that
2656 * a pt_pv is not being requested for kernel VAs. The kernel
2657 * pre-wires all higher-level page tables so don't overload managed
2658 * higher-level page tables on top of it!
2659 *
2660 * However, its convenient for us to allow the case when creating
2661 * iso_pmap. This is a bit of a hack but it simplifies iso_pmap
2662 * a lot.
2663 */
c8fe38ae 2664
582f286d
MD
2665 /*
2666 * The kernel never uses managed PT/PD/PDP pages.
2667 */
c713db65 2668 KKASSERT(pmap != kernel_pmap);
582f286d 2669
c8fe38ae 2670 /*
701c977e
MD
2671 * Non-terminal PVs allocate a VM page to represent the page table,
2672 * so we have to resolve pvp and calculate ptepindex for the pvp
2673 * and then for the page table entry index in the pvp for
2674 * fall-through.
c8fe38ae 2675 */
701c977e 2676 if (ptepindex < pmap_pd_pindex(0)) {
4a4ea614 2677 /*
701c977e 2678 * pv is PT, pvp is PD
4a4ea614 2679 */
701c977e
MD
2680 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2681 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2682 pvp = pmap_allocpte(pmap, ptepindex, NULL);
701c977e 2683
1b2e0b92 2684 /*
701c977e 2685 * PT index in PD
1b2e0b92 2686 */
701c977e
MD
2687 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2688 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
921c891e 2689 ispt = 1;
701c977e 2690 } else if (ptepindex < pmap_pdp_pindex(0)) {
1b2e0b92 2691 /*
701c977e 2692 * pv is PD, pvp is PDP
921c891e
MD
2693 *
2694 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2695 * the PD.
1b2e0b92 2696 */
701c977e
MD
2697 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2698 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
921c891e
MD
2699
2700 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2701 KKASSERT(pvpp == NULL);
2702 pvp = NULL;
2703 } else {
2704 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2705 }
701c977e
MD
2706
2707 /*
2708 * PD index in PDP
2709 */
2710 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2711 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2712 } else if (ptepindex < pmap_pml4_pindex()) {
700e22f7 2713 /*
701c977e 2714 * pv is PDP, pvp is the root pml4 table
1b2e0b92 2715 */
701c977e 2716 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
700e22f7 2717
701c977e
MD
2718 /*
2719 * PDP index in PML4
2720 */
2721 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2722 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2723 } else {
2724 /*
2725 * pv represents the top-level PML4, there is no parent.
2726 */
2727 pvp = NULL;
1b2e0b92 2728 }
700e22f7 2729
76f1911e
MD
2730 if (isnew == 0)
2731 goto notnew;
2732
700e22f7 2733 /*
737b020b 2734 * (isnew) is TRUE.
a7a03a5f
MD
2735 *
2736 * (1) Add a wire count to the parent page table (pvp).
2737 * (2) Allocate a VM page for the page table.
2738 * (3) Enter the VM page into the parent page table.
701c977e
MD
2739 *
2740 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
1b2e0b92 2741 */
a7a03a5f
MD
2742 if (pvp)
2743 vm_page_wire_quick(pvp->pv_m);
2744
701c977e
MD
2745 for (;;) {
2746 m = vm_page_alloc(NULL, pv->pv_pindex,
2747 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2748 VM_ALLOC_INTERRUPT);
2749 if (m)
2750 break;
2751 vm_wait(0);
1b2e0b92 2752 }
76f1911e 2753 vm_page_wire(m); /* wire for mapping in parent */
76f1911e
MD
2754 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2755 m->valid = VM_PAGE_BITS_ALL;
831a8507
MD
2756 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_UNQUEUED);
2757 KKASSERT(m->queue == PQ_NONE);
76f1911e 2758
701c977e 2759 pv->pv_m = m;
701c977e
MD
2760
2761 /*
737b020b 2762 * (isnew) is TRUE.
76f1911e 2763 *
a7a03a5f
MD
2764 * Wire the page into pvp. Bump the resident_count for the pmap.
2765 * There is no pvp for the top level, address the pm_pml4[] array
2766 * directly.
701c977e
MD
2767 *
2768 * If the caller wants the parent we return it, otherwise
2769 * we just put it away.
2770 *
2771 * No interlock is needed for pte 0 -> non-zero.
921c891e
MD
2772 *
2773 * In the situation where *ptep is valid we might have an unmanaged
2774 * page table page shared from another page table which we need to
2775 * unshare before installing our private page table page.
701c977e
MD
2776 */
2777 if (pvp) {
76f1911e 2778 v = VM_PAGE_TO_PHYS(m) |
9e24b495 2779 (pmap->pmap_bits[PG_RW_IDX] |
76f1911e 2780 pmap->pmap_bits[PG_V_IDX] |
9e24b495
MD
2781 pmap->pmap_bits[PG_A_IDX]);
2782 if (ptepindex < NUPTE_USER)
2783 v |= pmap->pmap_bits[PG_U_IDX];
2784 if (ptepindex < pmap_pt_pindex(0))
2785 v |= pmap->pmap_bits[PG_M_IDX];
2786
701c977e 2787 ptep = pv_pte_lookup(pvp, ptepindex);
4611d87f
MD
2788 if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso)
2789 ptep_iso = pv_pte_lookup(pmap->pm_pmlpv_iso, ptepindex);
2790 else
2791 ptep_iso = NULL;
a86ce0cd 2792 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
0600465e 2793 panic("pmap_allocpte: ptpte present without pv_entry!");
76f1911e
MD
2794 } else {
2795 pt_entry_t pte;
2796
2797 pte = atomic_swap_long(ptep, v);
4611d87f
MD
2798 if (ptep_iso)
2799 atomic_swap_long(ptep_iso, v);
76f1911e
MD
2800 if (pte != 0) {
2801 kprintf("install pgtbl mixup 0x%016jx "
2802 "old/new 0x%016jx/0x%016jx\n",
2803 (intmax_t)ptepindex, pte, v);
2804 }
921c891e 2805 }
701c977e
MD
2806 }
2807 vm_page_wakeup(m);
76f1911e 2808
737b020b 2809notnew:
76f1911e 2810 /*
737b020b 2811 * (isnew) may be TRUE or FALSE.
76f1911e 2812 */
76f1911e
MD
2813 if (pvp) {
2814 KKASSERT(pvp->pv_m != NULL);
2815 ptep = pv_pte_lookup(pvp, ptepindex);
2816 v = VM_PAGE_TO_PHYS(pv->pv_m) |
9e24b495 2817 (pmap->pmap_bits[PG_RW_IDX] |
76f1911e 2818 pmap->pmap_bits[PG_V_IDX] |
9e24b495
MD
2819 pmap->pmap_bits[PG_A_IDX]);
2820 if (ptepindex < NUPTE_USER)
2821 v |= pmap->pmap_bits[PG_U_IDX];
2822 if (ptepindex < pmap_pt_pindex(0))
2823 v |= pmap->pmap_bits[PG_M_IDX];
76f1911e
MD
2824 if (*ptep != v) {
2825 kprintf("mismatched upper level pt %016jx/%016jx\n",
2826 *ptep, v);
2827 }
2828 }
701c977e
MD
2829 if (pvpp)
2830 *pvpp = pvp;
2831 else if (pvp)
2832 pv_put(pvp);
2833 return (pv);
2834}
d7f50089
YY
2835
2836/*
701c977e
MD
2837 * Release any resources held by the given physical map.
2838 *
2839 * Called when a pmap initialized by pmap_pinit is being released. Should
2840 * only be called if the map contains no valid mappings.
d7f50089 2841 */
701c977e
MD
2842struct pmap_release_info {
2843 pmap_t pmap;
2844 int retry;
a7a03a5f 2845 pv_entry_t pvp;
701c977e
MD
2846};
2847
2848static int pmap_release_callback(pv_entry_t pv, void *data);
2849
2850void
2851pmap_release(struct pmap *pmap)
c8fe38ae 2852{
701c977e
MD
2853 struct pmap_release_info info;
2854
c07315c4
MD
2855 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2856 ("pmap still active! %016jx",
2857 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
701c977e 2858
73b1bfb1
MD
2859 /*
2860 * There is no longer a pmap_list, if there were we would remove the
2861 * pmap from it here.
2862 */
c8fe38ae
MD
2863
2864 /*
701c977e
MD
2865 * Pull pv's off the RB tree in order from low to high and release
2866 * each page.
c8fe38ae 2867 */
701c977e
MD
2868 info.pmap = pmap;
2869 do {
2870 info.retry = 0;
a7a03a5f
MD
2871 info.pvp = NULL;
2872
701c977e
MD
2873 spin_lock(&pmap->pm_spin);
2874 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2875 pmap_release_callback, &info);
2876 spin_unlock(&pmap->pm_spin);
a7a03a5f
MD
2877
2878 if (info.pvp)
2879 pv_put(info.pvp);
701c977e
MD
2880 } while (info.retry);
2881
a5fc46c9
MD
2882
2883 /*
4611d87f
MD
2884 * One resident page (the pml4 page) should remain. Two if
2885 * the pmap has implemented an isolated userland PML4E table.
701c977e 2886 * No wired pages should remain.
a5fc46c9 2887 */
4611d87f
MD
2888 int expected_res = 0;
2889
2890 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0)
2891 ++expected_res;
2892 if (pmap->pm_pmlpv_iso)
2893 ++expected_res;
2894
76f1911e 2895#if 1
4611d87f 2896 if (pmap->pm_stats.resident_count != expected_res ||
76f1911e
MD
2897 pmap->pm_stats.wired_count != 0) {
2898 kprintf("fatal pmap problem - pmap %p flags %08x "
2899 "rescnt=%jd wirecnt=%jd\n",
2900 pmap,
2901 pmap->pm_flags,
2902 pmap->pm_stats.resident_count,
2903 pmap->pm_stats.wired_count);
2904 tsleep(pmap, 0, "DEAD", 0);
2905 }
2906#else
4611d87f 2907 KKASSERT(pmap->pm_stats.resident_count == expected_res);
701c977e 2908 KKASSERT(pmap->pm_stats.wired_count == 0);
76f1911e 2909#endif
701c977e
MD
2910}
2911
a7a03a5f
MD
2912/*
2913 * Called from low to high. We must cache the proper parent pv so we
2914 * can adjust its wired count.
2915 */
701c977e
MD
2916static int
2917pmap_release_callback(pv_entry_t pv, void *data)
2918{
2919 struct pmap_release_info *info = data;
2920 pmap_t pmap = info->pmap;
a7a03a5f 2921 vm_pindex_t pindex;
921c891e 2922 int r;
701c977e 2923
76f1911e
MD
2924 /*
2925 * Acquire a held and locked pv, check for release race
2926 */
2927 pindex = pv->pv_pindex;
a7a03a5f
MD
2928 if (info->pvp == pv) {
2929 spin_unlock(&pmap->pm_spin);
2930 info->pvp = NULL;
2931 } else if (pv_hold_try(pv)) {
701c977e
MD
2932 spin_unlock(&pmap->pm_spin);
2933 } else {
2934 spin_unlock(&pmap->pm_spin);
2935 pv_lock(pv);
a3a33e50 2936 pv_put(pv);
5e78aef9 2937 info->retry = 1;
07fc7b93
MD
2938 spin_lock(&pmap->pm_spin);
2939
e989b548 2940 return -1;
48ffc236 2941 }
e989b548 2942 KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
a7a03a5f
MD
2943
2944 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2945 /*
76f1911e 2946 * I am PTE, parent is PT
a7a03a5f
MD
2947 */
2948 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2949 pindex += NUPTE_TOTAL;
2950 } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2951 /*
76f1911e 2952 * I am PT, parent is PD
a7a03a5f
MD
2953 */
2954 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2955 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2956 } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2957 /*
76f1911e 2958 * I am PD, parent is PDP
a7a03a5f
MD
2959 */
2960 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2961 NPDPEPGSHIFT;
2962 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2963 } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2964 /*
4611d87f
MD
2965 * I am PDP, parent is PML4. We always calculate the
2966 * normal PML4 here, not the isolated PML4.
a7a03a5f 2967 */
a7a03a5f
MD
2968 pindex = pmap_pml4_pindex();
2969 } else {
2970 /*
2971 * parent is NULL
2972 */
2973 if (info->pvp) {
2974 pv_put(info->pvp);
2975 info->pvp = NULL;
2976 }
2977 pindex = 0;
2978 }
2979 if (pindex) {
2980 if (info->pvp && info->pvp->pv_pindex != pindex) {
2981 pv_put(info->pvp);
2982 info->pvp = NULL;
2983 }
2984 if (info->pvp == NULL)
76f1911e 2985 info->pvp = pv_get(pmap, pindex, NULL);
a7a03a5f
MD
2986 } else {
2987 if (info->pvp) {
2988 pv_put(info->pvp);
2989 info->pvp = NULL;
2990 }
2991 }
2992 r = pmap_release_pv(pv, info->pvp, NULL);
921c891e 2993 spin_lock(&pmap->pm_spin);
76f1911e 2994
921c891e
MD
2995 return(r);
2996}
2997
2998/*
2999 * Called with held (i.e. also locked) pv. This function will dispose of
3000 * the lock along with the pv.
01d2a79f
MD
3001 *
3002 * If the caller already holds the locked parent page table for pv it
3003 * must pass it as pvp, allowing us to avoid a deadlock, else it can
3004 * pass NULL for pvp.
921c891e
MD
3005 */
3006static int
ccd67bf6 3007pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
921c891e
MD
3008{
3009 vm_page_t p;
48ffc236 3010
701c977e
MD
3011 /*
3012 * The pmap is currently not spinlocked, pv is held+locked.
3013 * Remove the pv's page from its parent's page table. The
3014 * parent's page table page's wire_count will be decremented.
e3e69557
MD
3015 *
3016 * This will clean out the pte at any level of the page table.
79f2da03 3017 * If smp != 0 all cpus are affected.
a7a03a5f
MD
3018 *
3019 * Do not tear-down recursively, its faster to just let the
3020 * release run its course.
701c977e 3021 */
a7a03a5f 3022 pmap_remove_pv_pte(pv, pvp, bulk, 0);
c8fe38ae
MD
3023
3024 /*
701c977e
MD
3025 * Terminal pvs are unhooked from their vm_pages. Because
3026 * terminal pages aren't page table pages they aren't wired
3027 * by us, so we have to be sure not to unwire them either.
c2830aa6 3028 *
c2830aa6
MD
3029 * XXX It is unclear if this code ever gets called because we
3030 * no longer use pv's to track terminal pages.
c8fe38ae 3031 */
701c977e 3032 if (pv->pv_pindex < pmap_pt_pindex(0)) {
c2830aa6 3033 pmap_remove_pv_page(pv, 0);
701c977e
MD
3034 goto skip;
3035 }
c8fe38ae 3036
c8fe38ae 3037 /*
701c977e
MD
3038 * We leave the top-level page table page cached, wired, and
3039 * mapped in the pmap until the dtor function (pmap_puninit())
3040 * gets called.
e8510e54 3041 *
701c977e
MD
3042 * Since we are leaving the top-level pv intact we need
3043 * to break out of what would otherwise be an infinite loop.
4611d87f
MD
3044 *
3045 * This covers both the normal and the isolated PML4 page.
c8fe38ae 3046 */
4611d87f 3047 if (pv->pv_pindex >= pmap_pml4_pindex()) {
701c977e 3048 pv_put(pv);
701c977e
MD
3049 return(-1);
3050 }
3051
3052 /*
3053 * For page table pages (other than the top-level page),
3054 * remove and free the vm_page. The representitive mapping
3055 * removed above by pmap_remove_pv_pte() did not undo the
3056 * last wire_count so we have to do that as well.
3057 */
c2830aa6 3058 p = pmap_remove_pv_page(pv, 1);
701c977e 3059 vm_page_busy_wait(p, FALSE, "pmaprl");
701c977e 3060 if (p->wire_count != 1) {
567a6398
MD
3061 const char *tstr;
3062
3063 if (pv->pv_pindex >= pmap_pdp_pindex(0))
3064 tstr = "PDP";
3065 else if (pv->pv_pindex >= pmap_pd_pindex(0))
3066 tstr = "PD";
3067 else if (pv->pv_pindex >= pmap_pt_pindex(0))
3068 tstr = "PT";
3069 else
3070 tstr = "PTE";
3071
3072 kprintf("p(%s) p->wire_count was %016lx %d\n",
3073 tstr, pv->pv_pindex, p->wire_count);
701c977e
MD
3074 }
3075 KKASSERT(p->wire_count == 1);
831a8507 3076 KKASSERT(p->flags & PG_UNQUEUED);
701c977e
MD
3077
3078 vm_page_unwire(p, 0);
3079 KKASSERT(p->wire_count == 0);
921c891e 3080
701c977e
MD
3081 vm_page_free(p);
3082skip:
76f1911e 3083 pv_free(pv, pvp);
a7a03a5f 3084
921c891e 3085 return 0;
701c977e
MD
3086}
3087
3088/*
3089 * This function will remove the pte associated with a pv from its parent.
a7a03a5f
MD
3090 * Terminal pv's are supported. All cpus specified by (bulk) are properly
3091 * invalidated.
701c977e
MD
3092 *
3093 * The wire count will be dropped on the parent page table. The wire
3094 * count on the page being removed (pv->pv_m) from the parent page table
3095 * is NOT touched. Note that terminal pages will not have any additional
3096 * wire counts while page table pages will have at least one representing
3097 * the mapping, plus others representing sub-mappings.
3098 *
3099 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
3100 * pages and user page table and terminal pages.
3101 *
5ee06c6c
MD
3102 * NOTE: The pte being removed might be unmanaged, and the pv supplied might
3103 * be freshly allocated and not imply that the pte is managed. In this
3104 * case pv->pv_m should be NULL.
3105 *
a7a03a5f
MD
3106 * The pv must be locked. The pvp, if supplied, must be locked. All
3107 * supplied pv's will remain locked on return.
701c977e
MD
3108 *
3109 * XXX must lock parent pv's if they exist to remove pte XXX
3110 */
3111static
3112void
a7a03a5f
MD
3113pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
3114 int destroy)
701c977e
MD
3115{
3116 vm_pindex_t ptepindex = pv->pv_pindex;
3117 pmap_t pmap = pv->pv_pmap;
3118 vm_page_t p;
3119 int gotpvp = 0;
48ffc236 3120
701c977e 3121 KKASSERT(pmap);
48ffc236 3122
4611d87f 3123 if (ptepindex >= pmap_pml4_pindex()) {
b12defdc 3124 /*
76f1911e 3125 * We are the top level PML4E table, there is no parent.
4611d87f
MD
3126 *
3127 * This is either the normal or isolated PML4E table.
3128 * Only the normal is used in regular operation, the isolated
3129 * is only passed in when breaking down the whole pmap.
b12defdc 3130 */
701c977e 3131 p = pmap->pm_pmlpv->pv_m;
5ee06c6c 3132 KKASSERT(pv->pv_m == p); /* debugging */
701c977e 3133 } else if (ptepindex >= pmap_pdp_pindex(0)) {
e8510e54 3134 /*
76f1911e 3135 * Remove a PDP page from the PML4E. This can only occur
701c977e
MD
3136 * with user page tables. We do not have to lock the
3137 * pml4 PV so just ignore pvp.
e8510e54 3138 */
701c977e
MD
3139 vm_pindex_t pml4_pindex;
3140 vm_pindex_t pdp_index;
3141 pml4_entry_t *pdp;
4611d87f 3142 pml4_entry_t *pdp_iso;
701c977e
MD
3143
3144 pdp_index = ptepindex - pmap_pdp_pindex(0);
3145 if (pvp == NULL) {
3146 pml4_pindex = pmap_pml4_pindex();
76f1911e 3147 pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
921c891e 3148 KKASSERT(pvp);
701c977e 3149 gotpvp = 1;
e8510e54 3150 }
76f1911e 3151
701c977e 3152 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
a86ce0cd 3153 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
701c977e 3154 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
ccd67bf6 3155 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
4611d87f
MD
3156
3157 /*
3158 * Also remove the PDP from the isolated PML4E if the
3159 * process uses one.
3160 */
3161 if (pvp == pmap->pm_pmlpv && pmap->pm_pmlpv_iso) {
3162 pdp_iso = &pmap->pm_pml4_iso[pdp_index &
3163 ((1ul << NPML4EPGSHIFT) - 1)];
3164 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp_iso, 0);
3165 }
5ee06c6c 3166 KKASSERT(pv->pv_m == p); /* debugging */
701c977e 3167 } else if (ptepindex >= pmap_pd_pindex(0)) {
e8510e54 3168 /*
76f1911e 3169 * Remove a PD page from the PDP
921c891e
MD
3170 *
3171 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
3172 * of a simple pmap because it stops at
3173 * the PD page.
e8510e54 3174 */
701c977e
MD
3175 vm_pindex_t pdp_pindex;
3176 vm_pindex_t pd_index;
3177 pdp_entry_t *pd;
48ffc236 3178
701c977e 3179 pd_index = ptepindex - pmap_pd_pindex(0);
48ffc236 3180
701c977e
MD
3181 if (pvp == NULL) {
3182 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
3183 (pd_index >> NPML4EPGSHIFT);
76f1911e 3184 pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
a7a03a5f 3185 gotpvp = 1;
921c891e 3186 }
76f1911e 3187
921c891e
MD
3188 if (pvp) {
3189 pd = pv_pte_lookup(pvp, pd_index &
3190 ((1ul << NPDPEPGSHIFT) - 1));
a86ce0cd 3191 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
921c891e 3192 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
ccd67bf6 3193 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
921c891e
MD
3194 } else {
3195 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
3196 p = pv->pv_m; /* degenerate test later */
701c977e 3197 }
5ee06c6c 3198 KKASSERT(pv->pv_m == p); /* debugging */
701c977e 3199 } else if (ptepindex >= pmap_pt_pindex(0)) {
e8510e54 3200 /*
76f1911e 3201 * Remove a PT page from the PD
e8510e54 3202 */
701c977e
MD
3203 vm_pindex_t pd_pindex;
3204 vm_pindex_t pt_index;
3205 pd_entry_t *pt;
b12defdc 3206
701c977e
MD
3207 pt_index = ptepindex - pmap_pt_pindex(0);
3208
3209 if (pvp == NULL) {
3210 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
3211 (pt_index >> NPDPEPGSHIFT);
76f1911e 3212 pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
921c891e 3213 KKASSERT(pvp);
701c977e
MD
3214 gotpvp = 1;
3215 }
76f1911e 3216
701c977e 3217 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
76f1911e
MD
3218#if 0
3219 KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
3220 ("*pt unexpectedly invalid %016jx "
3221 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
3222 *pt, gotpvp, ptepindex, pt_index, pv, pvp));
701c977e 3223 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
76f1911e
MD
3224#else
3225 if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
3226 kprintf("*pt unexpectedly invalid %016jx "
3227 "gotpvp=%d ptepindex=%ld ptindex=%ld "
3228 "pv=%p pvp=%p\n",
3229 *pt, gotpvp, ptepindex, pt_index, pv, pvp);
3230 tsleep(pt, 0, "DEAD", 0);
3231 p = pv->pv_m;
3232 } else {
3233 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
3234 }
3235#endif
ccd67bf6 3236 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
5ee06c6c 3237 KKASSERT(pv->pv_m == p); /* debugging */
701c977e 3238 } else {
e3c330f0 3239 KKASSERT(0);
c8fe38ae
MD
3240 }
3241
48ffc236 3242 /*
a7a03a5f
MD
3243 * If requested, scrap the underlying pv->pv_m and the underlying
3244 * pv. If this is a page-table-page we must also free the page.
701c977e 3245 *
a7a03a5f 3246 * pvp must be returned locked.
48ffc236 3247 */
a7a03a5f
MD
3248 if (destroy == 1) {
3249 /*
3250 * page table page (PT, PD, PDP, PML4), caller was responsible
3251 * for testing wired_count.
3252 */
a7a03a5f 3253 KKASSERT(pv->pv_m->wire_count == 1);
c2830aa6 3254 p = pmap_remove_pv_page(pv, 1);
76f1911e 3255 pv_free(pv, pvp);
a7a03a5f
MD
3256 pv = NULL;
3257
a7a03a5f
MD
3258 vm_page_busy_wait(p, FALSE, "pgpun");
3259 vm_page_unwire(p, 0);
3260 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
3261 vm_page_free(p);
c2830aa6 3262 }
a7a03a5f
MD
3263
3264 /*
3265 * If we acquired pvp ourselves then we are responsible for
3266 * recursively deleting it.
3267 */
3268 if (pvp && gotpvp) {
3269 /*
3270 * Recursively destroy higher-level page tables.
3271 *
3272 * This is optional. If we do not, they will still
3273 * be destroyed when the process exits.
b67dba3c
MD
3274 *
3275 * NOTE: Do not destroy pv_entry's with extra hold refs,
3276 * a caller may have unlocked it and intends to
3277 * continue to use it.
a7a03a5f 3278 */
582f286d
MD
3279 if (pmap_dynamic_delete &&
3280 pvp->pv_m &&
a7a03a5f 3281 pvp->pv_m->wire_count == 1 &&
b67dba3c 3282 (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
4611d87f 3283 pvp->pv_pindex < pmap_pml4_pindex()) {
c713db65 3284 if (pmap != kernel_pmap) {
8e9ad8f9
MD
3285 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
3286 pvp = NULL; /* safety */
3287 } else {
3288 kprintf("Attempt to remove kernel_pmap pindex "
3289 "%jd\n", pvp->pv_pindex);
3290 pv_put(pvp);
3291 }
a7a03a5f
MD
3292 } else {
3293 pv_put(pvp);
3294 }
3295 }
c8fe38ae
MD
3296}
3297
8e2efb11
MD
3298/*
3299 * Remove the vm_page association to a pv. The pv must be locked.
3300 */
bfc09ba0
MD
3301static
3302vm_page_t
c2830aa6 3303pmap_remove_pv_page(pv_entry_t pv, int clrpgbits)
d7f50089 3304{
c8fe38ae
MD
3305 vm_page_t m;
3306
701c977e 3307 m = pv->pv_m;
701c977e 3308 pv->pv_m = NULL;
c2830aa6
MD
3309 if (clrpgbits)
3310 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
a7a03a5f 3311
52bb73bc 3312 return(m);
d7f50089
YY
3313}
3314
3315/*
c8fe38ae 3316 * Grow the number of kernel page table entries, if needed.
a8cf2878
MD
3317 *
3318 * This routine is always called to validate any address space
3319 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
3320 * space below KERNBASE.
d95d5e03
MD
3321 *
3322 * kernel_map must be locked exclusively by the caller.
d7f50089 3323 */
c8fe38ae 3324void
a8cf2878 3325pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
d7f50089 3326{
48ffc236 3327 vm_paddr_t paddr;
c8fe38ae
MD
3328 vm_offset_t ptppaddr;
3329 vm_page_t nkpg;
701c977e 3330 pd_entry_t *pt, newpt;
8ff9866b 3331 pdp_entry_t *pd, newpd;
a8cf2878 3332 int update_kernel_vm_end;
c8fe38ae 3333
a8cf2878
MD
3334 /*
3335 * bootstrap kernel_vm_end on first real VM use
3336 */
c8fe38ae 3337 if (kernel_vm_end == 0) {
791c6551 3338 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
8ff9866b
MD
3339
3340 for (;;) {
c713db65 3341 pt = pmap_pt(kernel_pmap, kernel_vm_end);
8ff9866b
MD
3342 if (pt == NULL)
3343 break;
c713db65 3344 if ((*pt & kernel_pmap->pmap_bits[PG_V_IDX]) == 0)
8ff9866b 3345 break;
a8cf2878 3346 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
8ff9866b 3347 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
1eeaf6b2
AL
3348 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3349 kernel_vm_end = vm_map_max(kernel_map);
48ffc236
JG
3350 break;
3351 }
c8fe38ae
MD
3352 }
3353 }
a8cf2878
MD
3354
3355 /*
3356 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
3357 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
3358 * do not want to force-fill 128G worth of page tables.
3359 */
3360 if (kstart < KERNBASE) {
3361 if (kstart > kernel_vm_end)
3362 kstart = kernel_vm_end;
3363 KKASSERT(kend <= KERNBASE);
3364 update_kernel_vm_end = 1;
3365 } else {
3366 update_kernel_vm_end = 0;
3367 }
3368
8ff9866b
MD
3369 kstart = rounddown2(kstart, (vm_offset_t)(PAGE_SIZE * NPTEPG));
3370 kend = roundup2(kend, (vm_offset_t)(PAGE_SIZE * NPTEPG));
a8cf2878 3371
1eeaf6b2
AL
3372 if (kend - 1 >= vm_map_max(kernel_map))
3373 kend = vm_map_max(kernel_map);
a8cf2878
MD
3374
3375 while (kstart < kend) {
c713db65 3376 pt = pmap_pt(kernel_pmap, kstart);
701c977e 3377 if (pt == NULL) {
8ff9866b
MD
3378 /*
3379 * We need a new PD entry
3380 */
76f1911e 3381 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
a8cf2878
MD
3382 VM_ALLOC_NORMAL |
3383 VM_ALLOC_SYSTEM |
3384 VM_ALLOC_INTERRUPT);
3385 if (nkpg == NULL) {
3386 panic("pmap_growkernel: no memory to grow "
3387 "kernel");
3388 }
48ffc236 3389 paddr = VM_PAGE_TO_PHYS(nkpg);
afd2da4d 3390 pmap_zero_page(paddr);
c713db65 3391 pd = pmap_pd(kernel_pmap, kstart);
8ff9866b 3392
701c977e 3393 newpd = (pdp_entry_t)
a86ce0cd 3394 (paddr |
c713db65
AL
3395 kernel_pmap->pmap_bits[PG_V_IDX] |
3396 kernel_pmap->pmap_bits[PG_RW_IDX] |
3397 kernel_pmap->pmap_bits[PG_A_IDX]);
8ff9866b
MD
3398 atomic_swap_long(pd, newpd);
3399
3400#if 0
3401 kprintf("NEWPD pd=%p pde=%016jx phys=%016jx\n",
3402 pd, newpd, paddr);
3403#endif
3404
48ffc236
JG
3405 continue; /* try again */
3406 }
8ff9866b 3407
c713db65 3408 if ((*pt & kernel_pmap->pmap_bits[PG_V_IDX]) != 0) {
a8cf2878 3409 kstart = (kstart + PAGE_SIZE * NPTEPG) &
8ff9866b 3410 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
1eeaf6b2
AL
3411 if (kstart - 1 >= vm_map_max(kernel_map)) {
3412 kstart = vm_map_max(kernel_map);
48ffc236
JG
3413 break;
3414 }
c8fe38ae
MD
3415 continue;
3416 }
3417
3418 /*
8e9ad8f9
MD
3419 * We need a new PT
3420 *
c8fe38ae
MD
3421 * This index is bogus, but out of the way
3422 */
76f1911e 3423 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
a8cf2878
MD
3424 VM_ALLOC_NORMAL |
3425 VM_ALLOC_SYSTEM |
3426 VM_ALLOC_INTERRUPT);
c8fe38ae
MD
3427 if (nkpg == NULL)
3428 panic("pmap_growkernel: no memory to grow kernel");
3429
3430 vm_page_wire(nkpg);
3431 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3432 pmap_zero_page(ptppaddr);
76f1911e 3433 newpt = (pd_entry_t)(ptppaddr |
c713db65
AL
3434 kernel_pmap->pmap_bits[PG_V_IDX] |
3435 kernel_pmap->pmap_bits[PG_RW_IDX] |
3436 kernel_pmap->pmap_bits[PG_A_IDX]);
8ff9866b 3437 atomic_swap_long(pt, newpt);
c8fe38ae 3438
a8cf2878 3439 kstart = (kstart + PAGE_SIZE * NPTEPG) &
8ff9866b 3440 ~(vm_offset_t)(PAGE_SIZE * NPTEPG - 1);
a8cf2878 3441
1eeaf6b2
AL
3442 if (kstart - 1 >= vm_map_max(kernel_map)) {
3443 kstart = vm_map_max(kernel_map);
48ffc236 3444 break;
c8fe38ae 3445 }
c8fe38ae 3446 }
a8cf2878
MD
3447
3448 /*
3449 * Only update kernel_vm_end for areas below KERNBASE.
3450 */
3451 if (update_kernel_vm_end && kernel_vm_end < kstart)
3452 kernel_vm_end = kstart;
d7f50089
YY
3453}
3454
3455/*
921c891e 3456 * Add a reference to the specified pmap.
d7f50089 3457 */
c8fe38ae 3458void
921c891e 3459pmap_reference(pmap_t pmap)
d7f50089 3460{
76f1911e
MD
3461 if (pmap != NULL)
3462 atomic_add_int(&pmap->pm_count, 1);
d7f50089
YY
3463}
3464
e3c330f0
MD
3465void
3466pmap_maybethreaded(pmap_t pmap)
3467{
3468 atomic_set_int(&pmap->pm_flags, PMAP_MULTI);
3469}
3470
3471/*
3472 * Called while page is hard-busied to clear the PG_MAPPED and PG_WRITEABLE
c2830aa6
MD
3473 * flags if able. This can happen when the pmap code is unable to clear
3474 * the bits in prior actions due to not holding the page hard-busied at
3475 * the time.
3476 *
b9a6fe08
SW
3477 * The clearing of PG_MAPPED/WRITEABLE is an optional optimization done
3478 * when the pte is removed and only if the pte has not been multiply-mapped.
3479 * The caller may have to call vm_page_protect() if the bits are still set
3480 * here.
c2830aa6
MD
3481 *
3482 * This function is expected to be quick.
e3c330f0
MD
3483 */
3484int
3485pmap_mapped_sync(vm_page_t m)
3486{
e3c330f0
MD
3487 return (m->flags);
3488}
3489
c8fe38ae 3490/***************************************************
701c977e 3491 * page management routines.
c8fe38ae 3492 ***************************************************/
d7f50089
YY
3493
3494/*
701c977e 3495 * Hold a pv without locking it
d7f50089 3496 */
567a6398 3497#if 0
701c977e
MD
3498static void
3499pv_hold(pv_entry_t pv)
d7f50089 3500{
42909ca4 3501 atomic_add_int(&pv->pv_hold, 1);
d7f50089 3502}
567a6398 3503#endif
d7f50089
YY
3504
3505/*
701c977e
MD
3506 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
3507 * was successfully locked, FALSE if it wasn't. The caller must dispose of
3508 * the pv properly.
3509 *
3510 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
e989b548
MD
3511 * pv list via its page) must be held by the caller in order to stabilize
3512 * the pv.
d7f50089 3513 */
701c977e
MD
3514static int
3515_pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
d7f50089 3516{
701c977e
MD
3517 u_int count;
3518
8e2efb11
MD
3519 /*
3520 * Critical path shortcut expects pv to already have one ref
3521 * (for the pv->pv_pmap).
3522 */
67e78c75
MD
3523 count = pv->pv_hold;
3524 cpu_ccfence();
701c977e 3525 for (;;) {
701c977e 3526 if ((count & PV_HOLD_LOCKED) == 0) {
67e78c75 3527 if (atomic_fcmpset_int(&pv->pv_hold, &count,
701c977e
MD
3528 (count + 1) | PV_HOLD_LOCKED)) {
3529#ifdef PMAP_DEBUG
3530 pv->pv_func = func;
3531 pv->pv_line = lineno;
3532#endif
3533 return TRUE;
3534 }
3535 } else {
67e78c75 3536 if (atomic_fcmpset_int(&pv->pv_hold, &count, count + 1))
701c977e
MD
3537 return FALSE;
3538 }
3539 /* retry */
c8fe38ae 3540 }
d7f50089
YY
3541}
3542
3543/*
701c977e
MD
3544 * Drop a previously held pv_entry which could not be locked, allowing its
3545 * destruction.
3546 *
3547 * Must not be called with a spinlock held as we might zfree() the pv if it
3548 * is no longer associated with a pmap and this was the last hold count.
d7f50089 3549 */
701c977e
MD
3550static void
3551pv_drop(pv_entry_t pv)
d7f50089 3552{
701c977e 3553 u_int count;
c8fe38ae 3554
701c977e
MD
3555 for (;;) {
3556 count = pv->pv_hold;
3557 cpu_ccfence();
3558 KKASSERT((count & PV_HOLD_MASK) > 0);
3559 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3560 (PV_HOLD_LOCKED | 1));
3561 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
8e2efb11 3562 if ((count & PV_HOLD_MASK) == 1) {
a44410dd
MD
3563#ifdef PMAP_DEBUG2
3564 if (pmap_enter_debug > 0) {
3565 --pmap_enter_debug;
3566 kprintf("pv_drop: free pv %p\n", pv);
3567 }
3568#endif
8e2efb11
MD
3569 KKASSERT(count == 1);
3570 KKASSERT(pv->pv_pmap == NULL);
701c977e 3571 zfree(pvzone, pv);
8e2efb11 3572 }
701c977e 3573 return;
b12defdc 3574 }
701c977e 3575 /* retry */
c8fe38ae 3576 }
d7f50089 3577}
c8fe38ae 3578
d7f50089 3579/*
8e2efb11
MD
3580 * Find or allocate the requested PV entry, returning a locked, held pv.
3581 *
3582 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3583 * for the caller and one representing the pmap and vm_page association.
3584 *
3585 * If (*isnew) is zero, the returned pv will have only one hold count.
3586 *
3587 * Since both associations can only be adjusted while the pv is locked,
3588 * together they represent just one additional hold.
d7f50089 3589 */
bfc09ba0 3590static
701c977e
MD
3591pv_entry_t
3592_pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
c8fe38ae 3593{
08abdbfc 3594 struct mdglobaldata *md = mdcpu;
c8fe38ae 3595 pv_entry_t pv;
07fc7b93 3596 pv_entry_t pnew;
08abdbfc 3597 int pmap_excl = 0;
07fc7b93
MD
3598
3599 pnew = NULL;
3600 if (md->gd_newpv) {
bb1339f8 3601#if 1
07fc7b93
MD
3602 pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3603#else
3604 crit_enter();
3605 pnew = md->gd_newpv; /* might race NULL */
3606 md->gd_newpv = NULL;
3607 crit_exit();
3608#endif
3609 }
3610 if (pnew == NULL)
3611 pnew = zalloc(pvzone);
c8fe38ae 3612
08abdbfc 3613 spin_lock_shared(&pmap->pm_spin);
701c977e 3614 for (;;) {
76f1911e
MD
3615 /*
3616 * Shortcut cache
3617 */
bb1339f8 3618 pv = pv_entry_lookup(pmap, pindex);
701c977e 3619 if (pv == NULL) {
76f1911e
MD
3620 vm_pindex_t *pmark;
3621
08abdbfc
MD
3622 /*
3623 * Requires exclusive pmap spinlock
3624 */
3625 if (pmap_excl == 0) {
3626 pmap_excl = 1;
3627 if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3628 spin_unlock_shared(&pmap->pm_spin);
3629 spin_lock(&pmap->pm_spin);
3630 continue;
3631 }
3632 }
3633
76f1911e 3634 /*
2519e05d
MD
3635 * We need to block if someone is holding our
3636 * placemarker. As long as we determine the
3637 * placemarker has not been aquired we do not
3638 * need to get it as acquision also requires
3639 * the pmap spin lock.
3640 *
3641 * However, we can race the wakeup.
76f1911e
MD
3642 */
3643 pmark = pmap_placemarker_hash(pmap, pindex);
3644
3645 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
2519e05d 3646 tsleep_interlock(pmark, 0);
92414ddf 3647 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
2519e05d
MD
3648 if (((*pmark ^ pindex) &
3649 ~PM_PLACEMARK_WAKEUP) == 0) {
3650 spin_unlock(&pmap->pm_spin);
3651 tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3652 spin_lock(&pmap->pm_spin);
3653 }
76f1911e
MD
3654 continue;
3655 }
3656
3657 /*
3658 * Setup the new entry
3659 */
701c977e
MD
3660 pnew->pv_pmap = pmap;
3661 pnew->pv_pindex = pindex;
8e2efb11 3662 pnew->pv_hold = PV_HOLD_LOCKED | 2;
e05899ce 3663 pnew->pv_flags = 0;
701c977e
MD
3664#ifdef PMAP_DEBUG
3665 pnew->pv_func = func;
3666 pnew->pv_line = lineno;
e989b548
MD
3667 if (pnew->pv_line_lastfree > 0) {
3668 pnew->pv_line_lastfree =
3669 -pnew->pv_line_lastfree;
3670 }
701c977e 3671#endif
76f1911e 3672 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
701c977e
MD
3673 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3674 spin_unlock(&pmap->pm_spin);
3675 *isnew = 1;
76f1911e 3676
67e78c75 3677 KASSERT(pv == NULL, ("pv insert failed %p->%p", pnew, pv));
701c977e
MD
3678 return(pnew);
3679 }
76f1911e
MD
3680
3681 /*
07fc7b93
MD
3682 * We already have an entry, cleanup the staged pnew if
3683 * we can get the lock, otherwise block and retry.
76f1911e 3684 */
07fc7b93 3685 if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
08abdbfc
MD
3686 if (pmap_excl)
3687 spin_unlock(&pmap->pm_spin);
3688 else
3689 spin_unlock_shared(&pmap->pm_spin);
bb1339f8 3690#if 1
07fc7b93
MD
3691 pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3692 if (pnew)
3693 zfree(pvzone, pnew);
3694#else
3695 crit_enter();
3696 if (md->gd_newpv == NULL)
3697 md->gd_newpv = pnew;
3698 else
3699 zfree(pvzone, pnew);
3700 crit_exit();
3701#endif
e989b548
MD
3702 KKASSERT(pv->pv_pmap == pmap &&
3703 pv->pv_pindex == pindex);
701c977e
MD
3704 *isnew = 0;
3705 return(pv);
3706 }
08abdbfc
MD
3707 if (pmap_excl) {
3708 spin_unlock(&pmap->pm_spin);
3709 _pv_lock(pv PMAP_DEBUG_COPY);
3710 pv_put(pv);
3711 spin_lock(&pmap->pm_spin);
3712 } else {
3713 spin_unlock_shared(&pmap->pm_spin);
3714 _pv_lock(pv PMAP_DEBUG_COPY);
3715 pv_put(pv);
3716 spin_lock_shared(&pmap->pm_spin);
3717 }
701c977e 3718 }
07fc7b93 3719 /* NOT REACHED */
701c977e 3720}
b12defdc 3721
701c977e
MD
3722/*
3723 * Find the requested PV entry, returning a locked+held pv or NULL
3724 */
3725static
3726pv_entry_t
76f1911e 3727_pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
701c977e
MD
3728{
3729 pv_entry_t pv;
08abdbfc 3730 int pmap_excl = 0;
5926987a 3731
08abdbfc 3732 spin_lock_shared(&pmap->pm_spin);
701c977e
MD
3733 for (;;) {
3734 /*
3735 * Shortcut cache
3736 */
bb1339f8 3737 pv = pv_entry_lookup(pmap, pindex);
86d59af3 3738 if (pv == NULL) {
76f1911e 3739 /*
2519e05d
MD
3740 * Block if there is ANY placemarker. If we are to
3741 * return it, we must also aquire the spot, so we
3742 * have to block even if the placemarker is held on
3743 * a different address.
3744 *
3745 * OPTIMIZATION: If pmarkp is passed as NULL the
3746 * caller is just probing (or looking for a real
3747 * pv_entry), and in this case we only need to check
3748 * to see if the placemarker matches pindex.
76f1911e
MD
3749 */
3750 vm_pindex_t *pmark;
3751
08abdbfc
MD
3752 /*
3753 * Requires exclusive pmap spinlock
3754 */
3755 if (pmap_excl == 0) {
3756 pmap_excl = 1;
3757 if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3758 spin_unlock_shared(&pmap->pm_spin);
3759 spin_lock(&pmap->pm_spin);
3760 continue;
3761 }
3762 }
3763
76f1911e
MD
3764 pmark = pmap_placemarker_hash(pmap, pindex);
3765
3766 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3767 ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
2519e05d 3768 tsleep_interlock(pmark, 0);
92414ddf 3769 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
2519e05d
MD
3770 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3771 ((*pmark ^ pindex) &
3772 ~PM_PLACEMARK_WAKEUP) == 0) {
3773 spin_unlock(&pmap->pm_spin);
3774 tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3775 spin_lock(&pmap->pm_spin);
3776 }
76f1911e
MD
3777 continue;
3778 }
3779 if (pmarkp) {
5ee06c6c
MD
3780 if (atomic_swap_long(pmark, pindex) !=
3781 PM_NOPLACEMARK) {
3782 panic("_pv_get: pmark race");
3783 }
76f1911e
MD
3784 *pmarkp = pmark;
3785 }
701c977e
MD
3786 spin_unlock(&pmap->pm_spin);
3787 return NULL;
3788 }
3789 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
08abdbfc
MD
3790 if (pmap_excl)
3791 spin_unlock(&pmap->pm_spin);
3792 else
3793 spin_unlock_shared(&pmap->pm_spin);
e989b548
MD
3794 KKASSERT(pv->pv_pmap == pmap &&
3795 pv->pv_pindex == pindex);
701c977e 3796 return(pv);
5e78aef9 3797 }
08abdbfc
MD
3798 if (pmap_excl) {
3799 spin_unlock(&pmap->pm_spin);
3800 _pv_lock(pv PMAP_DEBUG_COPY);
3801 pv_put(pv);
3802 spin_lock(&pmap->pm_spin);
3803 } else {
3804 spin_unlock_shared(&pmap->pm_spin);
3805 _pv_lock(pv PMAP_DEBUG_COPY);
3806 pv_put(pv);
3807 spin_lock_shared(&pmap->pm_spin);
3808 }
701c977e 3809 }
d7f50089
YY
3810}
3811
3812/*
701c977e
MD
3813 * Lookup, hold, and attempt to lock (pmap,pindex).
3814 *
3815 * If the entry does not exist NULL is returned and *errorp is set to 0
a5fc46c9 3816 *
701c977e
MD
3817 * If the entry exists and could be successfully locked it is returned and
3818 * errorp is set to 0.
3819 *
3820 * If the entry exists but could NOT be successfully locked it is returned
3821 * held and *errorp is set to 1.
76f1911e
MD
3822 *
3823 * If the entry is placemarked by someone else NULL is returned and *errorp
3824 * is set to 1.
d7f50089 3825 */
bfc09ba0 3826static
701c977e 3827pv_entry_t
76f1911e 3828pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
d7f50089 3829{
c8fe38ae
MD
3830 pv_entry_t pv;
3831
a86ce0cd 3832 spin_lock_shared(&pmap->pm_spin);
76f1911e 3833
bb1339f8 3834 pv = pv_entry_lookup(pmap, pindex);
701c977e 3835 if (pv == NULL) {
76f1911e
MD
3836 vm_pindex_t *pmark;
3837
3838 pmark = pmap_placemarker_hash(pmap, pindex);
3839
3840 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3841 *errorp = 1;
3842 } else if (pmarkp &&
3843 atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3844 *errorp = 0;
3845 } else {
3846 /*
5ee06c6c
MD
3847 * Can't set a placemark with a NULL pmarkp, or if
3848 * pmarkp is non-NULL but we failed to set our
3849 * placemark.
76f1911e
MD
3850 */
3851 *errorp = 1;
3852 }
3853 if (pmarkp)
3854 *pmarkp = pmark;
a86ce0cd 3855 spin_unlock_shared(&pmap->pm_spin);
76f1911e 3856
701c977e
MD
3857 return NULL;
3858 }
e989b548
MD
3859
3860 /*
3861 * XXX This has problems if the lock is shared, why?
3862 */
701c977e 3863 if (pv_hold_try(pv)) {
a86ce0cd 3864 spin_unlock_shared(&pmap->pm_spin);
701c977e 3865 *errorp = 0;
5e78aef9 3866 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
701c977e
MD
3867 return(pv); /* lock succeeded */
3868 }
a86ce0cd 3869 spin_unlock_shared(&pmap->pm_spin);
701c977e 3870 *errorp = 1;
e989b548 3871
701c977e 3872 return (pv); /* lock failed */
d7f50089
YY
3873}
3874
701c977e
MD
3875/*
3876 * Lock a held pv, keeping the hold count
3877 */
3878static
3879void
3880_pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3881{
3882 u_int count;
3883
3884 for (;;) {
3885 count = pv->pv_hold;
3886 cpu_ccfence();
3887 if ((count & PV_HOLD_LOCKED) == 0) {
3888 if (atomic_cmpset_int(&pv->pv_hold, count,
3889 count | PV_HOLD_LOCKED)) {
3890#ifdef PMAP_DEBUG
3891 pv->pv_func = func;
3892 pv->pv_line = lineno;
3893#endif
3894 return;
c8fe38ae 3895 }
701c977e
MD
3896 continue;
3897 }
3898 tsleep_interlock(pv, 0);
3899 if (atomic_cmpset_int(&pv->pv_hold, count,
3900 count | PV_HOLD_WAITING)) {
e989b548
MD
3901#ifdef PMAP_DEBUG2
3902 if (pmap_enter_debug > 0) {
3903 --pmap_enter_debug;
3904 kprintf("pv waiting on %s:%d\n",
701c977e 3905 pv->pv_func, pv->pv_line);
e989b548 3906 }
c8fe38ae 3907#endif
701c977e 3908 tsleep(pv, PINTERLOCKED, "pvwait", hz);
c8fe38ae 3909 }
701c977e 3910 /* retry */
b12defdc 3911 }
701c977e 3912}
c8fe38ae 3913
701c977e
MD
3914/*
3915 * Unlock a held and locked pv, keeping the hold count.
3916 */
3917static
3918void
3919pv_unlock(pv_entry_t pv)
3920{
3921 u_int count;
3922
701c977e
MD
3923 for (;;) {
3924 count = pv->pv_hold;
3925 cpu_ccfence();
8e2efb11 3926 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
701c977e
MD
3927 (PV_HOLD_LOCKED | 1));
3928 if (atomic_cmpset_int(&pv->pv_hold, count,
3929 count &
3930 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3931 if (count & PV_HOLD_WAITING)
3932 wakeup(pv);
3933 break;
3934 }
7ab91d55 3935 }
d7f50089
YY
3936}
3937
3938/*
701c977e
MD
3939 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3940 * and the hold count drops to zero we will free it.
d7f50089 3941 *
701c977e
MD
3942 * Caller should not hold any spin locks. We are protected from hold races
3943 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3944 * lock held. A pv cannot be located otherwise.
d7f50089 3945 */
bfc09ba0
MD
3946static
3947void
701c977e 3948pv_put(pv_entry_t pv)
c8fe38ae 3949{
a44410dd
MD
3950#ifdef PMAP_DEBUG2
3951 if (pmap_enter_debug > 0) {
3952 --pmap_enter_debug;
3953 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3954 }
3955#endif
3956
e989b548 3957 /*
f76ae5a7 3958 * Normal put-aways must have a pv_m associated with the pv,
f545b541
MD
3959 * but allow the case where the pv has been destructed due
3960 * to pmap_dynamic_delete.
e989b548 3961 */
f76ae5a7 3962 KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
e989b548 3963
8e2efb11
MD
3964 /*
3965 * Fast - shortcut most common condition
3966 */
3967 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
701c977e 3968 return;
8e2efb11
MD
3969
3970 /*
3971 * Slow
3972 */
701c977e
MD
3973 pv_unlock(pv);
3974 pv_drop(pv);
3975}
c8fe38ae 3976
701c977e 3977/*
8e2efb11
MD
3978 * Remove the pmap association from a pv, require that pv_m already be removed,
3979 * then unlock and drop the pv. Any pte operations must have already been
3980 * completed. This call may result in a last-drop which will physically free
3981 * the pv.
3982 *
3983 * Removing the pmap association entails an additional drop.
3984 *
3985 * pv must be exclusively locked on call and will be disposed of on return.
701c977e
MD
3986 */
3987static
3988void
e989b548 3989_pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
701c977e
MD
3990{
3991 pmap_t pmap;
b12defdc 3992
e989b548
MD
3993#ifdef PMAP_DEBUG
3994 pv->pv_func_lastfree = func;
3995 pv->pv_line_lastfree = lineno;
3996#endif
701c977e 3997 KKASSERT(pv->pv_m == NULL);
e989b548
MD
3998 KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3999 (PV_HOLD_LOCKED|1));
701c977e
MD
4000 if ((pmap = pv->pv_pmap) != NULL) {
4001 spin_lock(&pmap->pm_spin);
76f1911e 4002 KKASSERT(pv->pv_pmap == pmap);
bb1339f8
MD
4003 if (pmap->pm_pvhint_pt == pv)
4004 pmap->pm_pvhint_pt = NULL;
567a6398
MD
4005 if (pmap->pm_pvhint_unused == pv)
4006 pmap->pm_pvhint_unused = NULL;
76f1911e 4007 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
701c977e
MD
4008 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4009 pv->pv_pmap = NULL;
4010 pv->pv_pindex = 0;
4011 spin_unlock(&pmap->pm_spin);
8e2efb11
MD
4012
4013 /*
4014 * Try to shortcut three atomic ops, otherwise fall through
4015 * and do it normally. Drop two refs and the lock all in
4016 * one go.
4017 */
e3c330f0
MD
4018 if (pvp) {
4019 if (vm_page_unwire_quick(pvp->pv_m))
4020 panic("_pv_free: bad wirecount on pvp");
4021 }
76f1911e 4022 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
a44410dd
MD
4023#ifdef PMAP_DEBUG2
4024 if (pmap_enter_debug > 0) {
4025 --pmap_enter_debug;
4026 kprintf("pv_free: free pv %p\n", pv);
4027 }
4028#endif
8e2efb11
MD
4029 zfree(pvzone, pv);
4030 return;
4031 }
4032 pv_drop(pv); /* ref for pv_pmap */
701c977e 4033 }
e989b548
MD
4034 pv_unlock(pv);
4035 pv_drop(pv);
701c977e
MD
4036}
4037
4038/*
4039 * This routine is very drastic, but can save the system
4040 * in a pinch.
4041 */
4042void
4043pmap_collect(void)
4044{
4045 int i;
4046 vm_page_t m;
4047 static int warningdone=0;
4048
4049 if (pmap_pagedaemon_waken == 0)
48ffc236 4050 return;
701c977e
MD
4051 pmap_pagedaemon_waken = 0;
4052 if (warningdone < 5) {
df49ec1e
MD
4053 kprintf("pmap_collect: pv_entries exhausted -- "
4054 "suggest increasing vm.pmap_pv_entries above %ld\n",
4055 vm_pmap_pv_entries);
701c977e
MD
4056 warningdone++;
4057 }
4058
4059 for (i = 0; i < vm_page_array_size; i++) {
4060 m = &vm_page_array[i];
4061 if (m->wire_count || m->hold_count)
4062 continue;
4063 if (vm_page_busy_try(m, TRUE) == 0) {
4064 if (m->wire_count == 0 && m->hold_count == 0) {
4065 pmap_remove_all(m);
4066 }
4067 vm_page_wakeup(m);
4068 }
4069 }
d7f50089
YY
4070}
4071
4072/*
701c977e 4073 * Scan the pmap for active page table entries and issue a callback.
921c891e
MD
4074 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
4075 * its parent page table.
d7f50089 4076 *
fb4ca018 4077 * pte_pv will be NULL if the page or page table is unmanaged.
921c891e 4078 * pt_pv will point to the page table page containing the pte for the page.
701c977e 4079 *
921c891e
MD
4080 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
4081 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
4082 * process pmap's PD and page to the callback function. This can be
4083 * confusing because the pt_pv is really a pd_pv, and the target page
4084 * table page is simply aliased by the pmap and not owned by it.
d7f50089 4085 *
701c977e 4086 * It is assumed that the start and end are properly rounded to the page size.
fb4ca018
MD
4087 *
4088 * It is assumed that PD pages and above are managed and thus in the RB tree,
4089 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
4090 */
4091struct pmap_scan_info {
4092 struct pmap *pmap;
4093 vm_offset_t sva;
4094 vm_offset_t eva;
4095 vm_pindex_t sva_pd_pindex;
4096 vm_pindex_t eva_pd_pindex;
9df83100 4097 void (*func)(pmap_t, struct pmap_scan_info *,
567a6398 4098 vm_pindex_t *, pv_entry_t, vm_offset_t,
fb4ca018
MD
4099 pt_entry_t *, void *);
4100 void *arg;
ccd67bf6
MD
4101 pmap_inval_bulk_t bulk_core;
4102 pmap_inval_bulk_t *bulk;
e674353b 4103 int count;
a7a03a5f 4104 int stop;
fb4ca018
MD
4105};
4106
4107static int pmap_scan_cmp(pv_entry_t pv, void *data);
4108static int pmap_scan_callback(pv_entry_t pv, void *data);
4109
701c977e 4110static void
ccd67bf6 4111pmap_scan(struct pmap_scan_info *info, int smp_inval)
701c977e 4112{
fb4ca018 4113 struct pmap *pmap = info->pmap;
701c977e
MD
4114 pv_entry_t pt_pv; /* A page table PV */
4115 pv_entry_t pte_pv; /* A page table entry PV */
76f1911e
MD
4116 vm_pindex_t *pte_placemark;
4117 vm_pindex_t *pt_placemark;
701c977e 4118 pt_entry_t *ptep;
8e2efb11 4119 pt_entry_t oldpte;
fb4ca018 4120 struct pv_entry dummy_pv;
c8fe38ae 4121
a7a03a5f 4122 info->stop = 0;
c8fe38ae
MD
4123 if (pmap == NULL)
4124 return;
95270b7e
MD
4125 if (info->sva == info->eva)
4126 return;
ccd67bf6
MD
4127 if (smp_inval) {
4128 info->bulk = &info->bulk_core;
4129 pmap_inval_bulk_init(&info->bulk_core, pmap);
4130 } else {
4131 info->bulk = NULL;
4132 }
c8fe38ae 4133
701c977e
MD
4134 /*
4135 * Hold the token for stability; if the pmap is empty we have nothing
4136 * to do.
4137 */
701c977e 4138#if 0
10d6182e 4139 if (pmap->pm_stats.resident_count == 0) {
c8fe38ae 4140 return;
10d6182e 4141 }
701c977e 4142#endif
c8fe38ae 4143
e674353b 4144 info->count = 0;
c8fe38ae
MD
4145
4146 /*
fb4ca018 4147 * Special handling for scanning one page, which is a very common
701c977e 4148 * operation (it is?).
fb4ca018 4149 *
701c977e 4150 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
c8fe38ae 4151 */
fb4ca018
MD
4152 if (info->sva + PAGE_SIZE == info->eva) {
4153 if (info->sva >= VM_MAX_USER_ADDRESS) {
701c977e
MD
4154 /*
4155 * Kernel mappings do not track wire counts on
fb4ca018
MD
4156 * page table pages and only maintain pd_pv and
4157 * pte_pv levels so pmap_scan() works.
701c977e
MD
4158 */
4159 pt_pv = NULL;
76f1911e
MD
4160 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4161 &pte_placemark);
567a6398 4162 KKASSERT(pte_pv == NULL);
fb4ca018 4163 ptep = vtopte(info->sva);
701c977e
MD
4164 } else {
4165 /*
76f1911e
MD
4166 * We hold pte_placemark across the operation for
4167 * unmanaged pages.
4168 *
4169 * WARNING! We must hold pt_placemark across the
4170 * *ptep test to prevent misintepreting
4171 * a non-zero *ptep as a shared page
4172 * table page. Hold it across the function
4173 * callback as well for SMP safety.
701c977e 4174 */
76f1911e
MD
4175 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
4176 &pte_placemark);
567a6398 4177 KKASSERT(pte_pv == NULL);
76f1911e 4178 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
567a6398 4179 &pt_placemark);
701c977e 4180 if (pt_pv == NULL) {
567a6398
MD
4181#if 0
4182 KKASSERT(0);
76f1911e
MD
4183 pd_pv = pv_get(pmap,
4184 pmap_pd_pindex(info->sva),
4185 NULL);
921c891e
MD
4186 if (pd_pv) {
4187 ptep = pv_pte_lookup(pd_pv,
fb4ca018 4188 pmap_pt_index(info->sva));
921c891e 4189 if (*ptep) {
9df83100 4190 info->func(pmap, info,
567a6398 4191 pt_placemark, pd_pv,
fb4ca018
MD
4192 info->sva, ptep,
4193 info->arg);
76f1911e
MD
4194 } else {
4195 pv_placemarker_wakeup(pmap,
4196 pt_placemark);
921c891e
MD
4197 }
4198 pv_put(pd_pv);
76f1911e
MD
4199 } else {
4200 pv_placemarker_wakeup(pmap,
4201 pt_placemark);
921c891e 4202 }
567a6398
MD
4203#else
4204 pv_placemarker_wakeup(pmap, pt_placemark);
4205#endif
76f1911e 4206 pv_placemarker_wakeup(pmap, pte_placemark);
701c977e
MD
4207 goto fast_skip;
4208 }
fb4ca018 4209 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
701c977e 4210 }
8e2efb11
MD
4211
4212 /*
4213 * NOTE: *ptep can't be ripped out from under us if we hold
76f1911e
MD
4214 * pte_pv (or pte_placemark) locked, but bits can
4215 * change.
8e2efb11
MD
4216 */
4217 oldpte = *ptep;
4218 cpu_ccfence();
4219 if (oldpte == 0) {
701c977e 4220 KKASSERT(pte_pv == NULL);
76f1911e 4221 pv_placemarker_wakeup(pmap, pte_placemark);
701c977e 4222 } else {
567a6398
MD
4223 KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]) ==
4224 pmap->pmap_bits[PG_V_IDX],
76f1911e
MD
4225 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
4226 *ptep, oldpte, info->sva));
567a6398 4227 info->func(pmap, info, pte_placemark, pt_pv,
76f1911e 4228 info->sva, ptep, info->arg);
48ffc236 4229 }
701c977e
MD
4230 if (pt_pv)
4231 pv_put(pt_pv);
4232fast_skip:
ccd67bf6 4233 pmap_inval_bulk_flush(info->bulk);
701c977e 4234 return;
c8fe38ae
MD
4235 }
4236
fb4ca018
MD
4237 /*
4238 * Nominal scan case, RB_SCAN() for PD pages and iterate from
4239 * there.
95270b7e
MD
4240 *
4241 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4242 * bounds, resulting in a pd_pindex of 0. To solve the
4243 * problem we use an inclusive range.
fb4ca018
MD
4244 */
4245 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
95270b7e 4246 info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
fb4ca018
MD
4247
4248 if (info->sva >= VM_MAX_USER_ADDRESS) {
4249 /*
4250 * The kernel does not currently maintain any pv_entry's for
4251 * higher-level page tables.
4252 */
4253 bzero(&dummy_pv, sizeof(dummy_pv));
4254 dummy_pv.pv_pindex = info->sva_pd_pindex;
4255 spin_lock(&pmap->pm_spin);
95270b7e 4256 while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
fb4ca018
MD
4257 pmap_scan_callback(&dummy_pv, info);
4258 ++dummy_pv.pv_pindex;
95270b7e
MD
4259 if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
4260 break;
fb4ca018
MD
4261 }
4262 spin_unlock(&pmap->pm_spin);
4263 } else {
4264 /*
567a6398
MD
4265 * User page tables maintain local PML4, PDP, PD, and PT
4266 * pv_entry's. pv_entry's are not used for PTEs.
fb4ca018
MD
4267 */
4268 spin_lock(&pmap->pm_spin);
76f1911e
MD
4269 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
4270 pmap_scan_callback, info);
fb4ca018
MD
4271 spin_unlock(&pmap->pm_spin);
4272 }
ccd67bf6 4273 pmap_inval_bulk_flush(info->bulk);
fb4ca018
MD
4274}
4275
4276/*
4277 * WARNING! pmap->pm_spin held
95270b7e
MD
4278 *
4279 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4280 * bounds, resulting in a pd_pindex of 0. To solve the
4281 * problem we use an inclusive range.
fb4ca018
MD
4282 */
4283static int
4284pmap_scan_cmp(pv_entry_t pv, void *data)
4285{
4286 struct pmap_scan_info *info = data;
4287 if (pv->pv_pindex < info->sva_pd_pindex)
4288 return(-1);
95270b7e 4289 if (pv->pv_pindex > info->eva_pd_pindex)
fb4ca018
MD
4290 return(1);
4291 return(0);
4292}
4293
4294/*
76f1911e
MD
4295 * pmap_scan() by PDs
4296 *
fb4ca018
MD
4297 * WARNING! pmap->pm_spin held
4298 */
4299static int
4300pmap_scan_callback(pv_entry_t pv, void *data)
4301{
4302 struct pmap_scan_info *info = data;
4303 struct pmap *pmap = info->pmap;
4304 pv_entry_t pd_pv; /* A page directory PV */
4305 pv_entry_t pt_pv; /* A page table PV */
76f1911e 4306 vm_pindex_t *pt_placemark;
fb4ca018 4307 pt_entry_t *ptep;
8e2efb11 4308 pt_entry_t oldpte;
fb4ca018
MD
4309 vm_offset_t sva;
4310 vm_offset_t eva;
4311 vm_offset_t va_next;
4312 vm_pindex_t pd_pindex;
4313 int error;
4314
a7a03a5f
MD
4315 /*
4316 * Stop if requested
4317 */
4318 if (info->stop)
4319 return -1;
4320
fb4ca018
MD
4321 /*
4322 * Pull the PD pindex from the pv before releasing the spinlock.
4323 *
4324 * WARNING: pv is faked for kernel pmap scans.
4325 */
4326 pd_pindex = pv->pv_pindex;
4327 spin_unlock(&pmap->pm_spin);
4328 pv = NULL; /* invalid after spinlock unlocked */
4329
4330 /*
4331 * Calculate the page range within the PD. SIMPLE pmaps are
4332 * direct-mapped for the entire 2^64 address space. Normal pmaps
4333 * reflect the user and kernel address space which requires
4334 * cannonicalization w/regards to converting pd_pindex's back
4335 * into addresses.
4336 */
76f1911e 4337 sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
fb4ca018
MD
4338 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4339 (sva & PML4_SIGNMASK)) {
4340 sva |= PML4_SIGNMASK;
4341 }
4342 eva = sva + NBPDP; /* can overflow */
4343 if (sva < info->sva)
4344 sva = info->sva;
4345 if (eva < info->sva || eva > info->eva)
4346 eva = info->eva;
4347
701c977e
MD
4348 /*
4349 * NOTE: kernel mappings do not track page table pages, only
4350 * terminal pages.
4351 *
4352 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4353 * However, for the scan to be efficient we try to
4354 * cache items top-down.
4355 */
701c977e
MD
4356 pd_pv = NULL;
4357 pt_pv = NULL;
4358
48ffc236 4359 for (; sva < eva; sva = va_next) {
a7a03a5f
MD
4360 if (info->stop)
4361 break;
701c977e
MD
4362 if (sva >= VM_MAX_USER_ADDRESS) {
4363 if (pt_pv) {
4364 pv_put(pt_pv);
4365 pt_pv = NULL;
4366 }
4367 goto kernel_skip;
4368 }
4369
4370 /*
76f1911e 4371 * PD cache, scan shortcut if it doesn't exist.
701c977e
MD
4372 */
4373 if (pd_pv == NULL) {
76f1911e
MD
4374 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4375 } else if (pd_pv->pv_pmap != pmap ||
4376 pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
701c977e 4377 pv_put(pd_pv);
76f1911e 4378 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
701c977e
MD
4379 }
4380 if (pd_pv == NULL) {
48ffc236
JG
4381 va_next = (sva + NBPDP) & ~PDPMASK;
4382 if (va_next < sva)
4383 va_next = eva;
4384 continue;
4385 }
c8fe38ae
MD
4386
4387 /*
701c977e 4388 * PT cache
a3a33e50
MD
4389 *
4390 * NOTE: The cached pt_pv can be removed from the pmap when
4391 * pmap_dynamic_delete is enabled.
c8fe38ae 4392 */
76f1911e
MD
4393 if (pt_pv && (pt_pv->pv_pmap != pmap ||
4394 pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
701c977e 4395 pv_put(pt_pv);
76f1911e
MD
4396 pt_pv = NULL;
4397 }
4398 if (pt_pv == NULL) {
4399 pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4400 &pt_placemark, &error);
4401 if (error) {
4402 pv_put(pd_pv); /* lock order */
4403 pd_pv = NULL;
4404 if (pt_pv) {
4405 pv_lock(pt_pv);
a3a33e50 4406 pv_put(pt_pv);
76f1911e
MD
4407 pt_pv = NULL;
4408 } else {
4409 pv_placemarker_wait(pmap, pt_placemark);
4410 }
4411 va_next = sva;
4412 continue;
4413 }
4414 /* may have to re-check later if pt_pv is NULL here */
701c977e 4415 }
c8fe38ae
MD
4416
4417 /*
567a6398
MD
4418 * If pt_pv is NULL we either have a shared page table
4419 * page (NOT IMPLEMENTED XXX) and must issue a callback
4420 * specific to that case, or there is no page table page.
921c891e
MD
4421 *
4422 * Either way we can skip the page table page.
76f1911e
MD
4423 *
4424 * WARNING! pt_pv can also be NULL due to a pv creation
4425 * race where we find it to be NULL and then
4426 * later see a pte_pv. But its possible the pt_pv
4427 * got created inbetween the two operations, so
4428 * we must check.
567a6398
MD
4429 *
4430 * XXX This should no longer be the case because
4431 * we have pt_placemark.
c8fe38ae 4432 */
701c977e 4433 if (pt_pv == NULL) {
567a6398
MD
4434#if 0
4435 /* XXX REMOVED */
921c891e
MD
4436 /*
4437 * Possible unmanaged (shared from another pmap)
4438 * page table page.
76f1911e
MD
4439 *
4440 * WARNING! We must hold pt_placemark across the
4441 * *ptep test to prevent misintepreting
4442 * a non-zero *ptep as a shared page
4443 * table page. Hold it across the function
4444 * callback as well for SMP safety.
921c891e 4445 */
567a6398 4446 KKASSERT(0);
921c891e 4447 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
a86ce0cd 4448 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
567a6398 4449 info->func(pmap, info, pt_placemark, pd_pv,
fb4ca018 4450 sva, ptep, info->arg);
76f1911e
MD
4451 } else {
4452 pv_placemarker_wakeup(pmap, pt_placemark);
921c891e 4453 }
567a6398
MD
4454#else
4455 pv_placemarker_wakeup(pmap, pt_placemark);
4456#endif
921c891e
MD
4457
4458 /*
4459 * Done, move to next page table page.
4460 */
701c977e
MD
4461 va_next = (sva + NBPDR) & ~PDRMASK;
4462 if (va_next < sva)
4463 va_next = eva;
c8fe38ae 4464 continue;
701c977e 4465 }
c8fe38ae 4466
48ffc236 4467 /*
701c977e
MD
4468 * From this point in the loop testing pt_pv for non-NULL
4469 * means we are in UVM, else if it is NULL we are in KVM.
fb4ca018
MD
4470 *
4471 * Limit our scan to either the end of the va represented
4472 * by the current page table page, or to the end of the
4473 * range being removed.
48ffc236 4474 */
701c977e
MD
4475kernel_skip:
4476 va_next = (sva + NBPDR) & ~PDRMASK;
4477 if (va_next < sva)
4478 va_next = eva;
fb4ca018
MD
4479 if (va_next > eva)
4480 va_next = eva;
48ffc236 4481
c8fe38ae 4482 /*
701c977e
MD
4483 * Scan the page table for pages. Some pages may not be
4484 * managed (might not have a pv_entry).
4485 *
4486 * There is no page table management for kernel pages so
4487 * pt_pv will be NULL in that case, but otherwise pt_pv
4488 * is non-NULL, locked, and referenced.
c8fe38ae 4489 */
c8fe38ae 4490
f2c5d4ab
MD
4491 /*
4492 * At this point a non-NULL pt_pv means a UVA, and a NULL
4493 * pt_pv means a KVA.
4494 */
701c977e
MD
4495 if (pt_pv)
4496 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4497 else
4498 ptep = vtopte(sva);
4499
4500 while (sva < va_next) {
76f1911e 4501 vm_pindex_t *pte_placemark;
567a6398 4502 pv_entry_t pte_pv;
76f1911e 4503
cfffe7b1 4504 /*
a7a03a5f 4505 * Yield every 64 pages, stop if requested.
cfffe7b1
MD
4506 */
4507 if ((++info->count & 63) == 0)
4508 lwkt_user_yield();
a7a03a5f
MD
4509 if (info->stop)
4510 break;
4511
4512 /*
76f1911e
MD
4513 * We can shortcut our scan if *ptep == 0. This is
4514 * an unlocked check.
a7a03a5f 4515 */
76f1911e
MD
4516 if (*ptep == 0) {
4517 sva += PAGE_SIZE;
4518 ++ptep;
4519 continue;
4520 }
5ee06c6c 4521 cpu_ccfence();
cfffe7b1 4522
f2c5d4ab 4523 /*
567a6398
MD
4524 * Acquire the pte_placemark. pte_pv's won't exist
4525 * for leaf pages.
f2c5d4ab 4526 *
567a6398
MD
4527 * A multitude of races are possible here so if we
4528 * cannot lock definite state we clean out our cache
4529 * and break the inner while() loop to force a loop
4530 * up to the top of the for().
90244566 4531 *
76f1911e
MD
4532 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4533 * validity instead of looping up?
f2c5d4ab 4534 */
76f1911e
MD
4535 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4536 &pte_placemark, &error);
567a6398 4537 KKASSERT(pte_pv == NULL);
76f1911e 4538 if (error) {
698ba577
MD
4539 if (pd_pv) {
4540 pv_put(pd_pv); /* lock order */
4541 pd_pv = NULL;
4542 }
76f1911e
MD
4543 if (pt_pv) {
4544 pv_put(pt_pv); /* lock order */
4545 pt_pv = NULL;
4546 }
567a6398 4547 pv_placemarker_wait(pmap, pte_placemark);
76f1911e
MD
4548 va_next = sva; /* retry */
4549 break;
701c977e
MD
4550 }
4551
a505393f 4552 /*
e989b548 4553 * Reload *ptep after successfully locking the
567a6398 4554 * pindex.
a505393f 4555 */
e989b548 4556 cpu_ccfence();
8e2efb11
MD
4557 oldpte = *ptep;
4558 if (oldpte == 0) {
567a6398 4559 pv_placemarker_wakeup(pmap, pte_placemark);
90244566
MD
4560 sva += PAGE_SIZE;
4561 ++ptep;
a505393f
MD
4562 continue;
4563 }
4564
76f1911e
MD
4565 /*
4566 * We can't hold pd_pv across the callback (because
4567 * we don't pass it to the callback and the callback
4568 * might deadlock)
4569 */
4570 if (pd_pv) {
4571 vm_page_wire_quick(pd_pv->pv_m);
4572 pv_unlock(pd_pv);
4573 }
4574
701c977e 4575 /*
567a6398
MD
4576 * Ready for the callback. The locked placemarker
4577 * is consumed by the callback.
701c977e 4578 */
e989b548
MD
4579 if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4580 /*
4581 * Managed pte
4582 */
567a6398
MD
4583 KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]),
4584 ("badC *ptep %016lx/%016lx sva %016lx",
4585 *ptep, oldpte, sva));
a7a03a5f
MD
4586 /*
4587 * We must unlock pd_pv across the callback
4588 * to avoid deadlocks on any recursive
4589 * disposal. Re-check that it still exists
4590 * after re-locking.
76f1911e 4591 *
567a6398
MD
4592 * Call target disposes of pte_placemark
4593 * and may destroy but will not dispose
4594 * of pt_pv.
a7a03a5f 4595 */
567a6398 4596 info->func(pmap, info, pte_placemark, pt_pv,
a7a03a5f 4597 sva, ptep, info->arg);
701c977e 4598 } else {
8e2efb11 4599 /*
e989b548
MD
4600 * Unmanaged pte
4601 *
a7a03a5f
MD
4602 * We must unlock pd_pv across the callback
4603 * to avoid deadlocks on any recursive
4604 * disposal. Re-check that it still exists
4605 * after re-locking.
76f1911e 4606 *
567a6398
MD
4607 * Call target disposes of pte_placemark
4608 * and may destroy but will not dispose
4609 * of pt_pv.
8e2efb11 4610 */
567a6398
MD
4611 KASSERT((oldpte & pmap->pmap_bits[PG_V_IDX]),
4612 ("badD *ptep %016lx/%016lx sva %016lx ",
4613 *ptep, oldpte, sva));
4614 info->func(pmap, info, pte_placemark, pt_pv,
4615 sva, ptep, info->arg);
76f1911e
MD
4616 }
4617 if (pd_pv) {
4618 pv_lock(pd_pv);
e3c330f0
MD
4619 if (vm_page_unwire_quick(pd_pv->pv_m)) {
4620 panic("pmap_scan_callback: "
4621 "bad wirecount on pd_pv");
4622 }
76f1911e
MD
4623 if (pd_pv->pv_pmap == NULL) {
4624 va_next = sva; /* retry */
4625 break;
a7a03a5f 4626 }
701c977e 4627 }
a3a33e50
MD
4628
4629 /*
4630 * NOTE: The cached pt_pv can be removed from the
4631 * pmap when pmap_dynamic_delete is enabled,
4632 * which will cause ptep to become stale.
4633 *
4634 * This also means that no pages remain under
4635 * the PT, so we can just break out of the inner
4636 * loop and let the outer loop clean everything
4637 * up.
4638 */
4639 if (pt_pv && pt_pv->pv_pmap != pmap)
4640 break;
701c977e
MD
4641 sva += PAGE_SIZE;
4642 ++ptep;
c8fe38ae
MD
4643 }
4644 }
701c977e
MD
4645 if (pd_pv) {
4646 pv_put(pd_pv);
4647 pd_pv = NULL;
4648 }
4649 if (pt_pv) {
4650 pv_put(pt_pv);
4651 pt_pv = NULL;
4652 }
e674353b
MD
4653 if ((++info->count & 7) == 0)
4654 lwkt_user_yield();
fb4ca018
MD
4655
4656 /*
4657 * Relock before returning.
4658 */
4659 spin_lock(&pmap->pm_spin);
4660 return (0);
701c977e
MD
4661}
4662
4663void
4664pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4665{
fb4ca018
MD
4666 struct pmap_scan_info info;
4667
4668 info.pmap = pmap;
4669 info.sva = sva;
4670 info.eva = eva;
4671 info.func = pmap_remove_callback;
4672 info.arg = NULL;
ccd67bf6 4673 pmap_scan(&info, 1);
95270b7e
MD
4674#if 0
4675 cpu_invltlb();
4676 if (eva - sva < 1024*1024) {
4677 while (sva < eva) {
4678 cpu_invlpg((void *)sva);
4679 sva += PAGE_SIZE;
4680 }
4681 }
4682#endif
701c977e
MD
4683}
4684
4685static void
9df83100
MD
4686pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4687{
4688 struct pmap_scan_info info;
4689
4690 info.pmap = pmap;
4691 info.sva = sva;
4692 info.eva = eva;
4693 info.func = pmap_remove_callback;
4694 info.arg = NULL;
ccd67bf6 4695 pmap_scan(&info, 0);
9df83100
MD
4696}
4697
4698static void
4699pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
567a6398 4700 vm_pindex_t *pte_placemark, pv_entry_t pt_pv,
921c891e 4701 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
701c977e
MD
4702{
4703 pt_entry_t pte;
c2830aa6 4704 vm_page_t oldm;
701c977e 4705
567a6398
MD
4706 /*
4707 * Managed or unmanaged pte (pte_placemark is non-NULL)
4708 *
4709 * pt_pv's wire_count is still bumped by unmanaged pages
4710 * so we must decrement it manually.
4711 *
4712 * We have to unwire the target page table page.
4713 */
c2830aa6
MD
4714 pte = *ptep;
4715 if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4716 oldm = PHYS_TO_VM_PAGE(pte & PG_FRAME);
4717 atomic_add_long(&oldm->md.interlock_count, 1);
4718 } else {
4719 oldm = NULL;
4720 }
c2830aa6 4721
567a6398
MD
4722 pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4723 if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4724 vm_page_t p;
a7a03a5f 4725
567a6398
MD
4726 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
4727 KKASSERT(pte & pmap->pmap_bits[PG_V_IDX]);
4728 if (pte & pmap->pmap_bits[PG_M_IDX])
4729 vm_page_dirty(p);
4730 if (pte & pmap->pmap_bits[PG_A_IDX])
4731 vm_page_flag_set(p, PG_REFERENCED);
e3c330f0
MD
4732
4733 /*
c2830aa6
MD
4734 * (p) is not hard-busied.
4735 *
b9a6fe08
SW
4736 * We can safely clear PG_MAPPED and PG_WRITEABLE only
4737 * if PG_MAPPEDMULTI is not set, atomically.
e3c330f0 4738 */
c2830aa6 4739 pmap_removed_pte(p, pte);
e3c330f0
MD
4740 }
4741 if (pte & pmap->pmap_bits[PG_V_IDX]) {
4742 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4743 if (pt_pv && vm_page_unwire_quick(pt_pv->pv_m))
4744 panic("pmap_remove: insufficient wirecount");
567a6398
MD
4745 }
4746 if (pte & pmap->pmap_bits[PG_W_IDX])
4747 atomic_add_long(&pmap->pm_stats.wired_count, -1);
4748 if (pte & pmap->pmap_bits[PG_G_IDX])
4749 cpu_invlpg((void *)va);
567a6398 4750 pv_placemarker_wakeup(pmap, pte_placemark);
c2830aa6
MD
4751 if (oldm) {
4752 if ((atomic_fetchadd_long(&oldm->md.interlock_count, -1) &
4753 0x7FFFFFFFFFFFFFFFLU) == 0x4000000000000001LU) {
4754 atomic_clear_long(&oldm->md.interlock_count,
4755 0x4000000000000000LU);
4756 wakeup(&oldm->md.interlock_count);
4757 }
4758 }
d7f50089
YY
4759}
4760
4761/*
b12defdc
MD
4762 * Removes this physical page from all physical maps in which it resides.
4763 * Reflects back modify bits to the pager.
d7f50089 4764 *
b12defdc 4765 * This routine may not be called from an interrupt.
567a6398
MD
4766 *
4767 * The page must be busied by its caller, preventing new ptes from being
4768 * installed. This allows us to assert that pmap_count is zero and safely
4769 * clear the MAPPED and WRITEABLE bits upon completion.
d7f50089 4770 */
bfc09ba0
MD
4771static
4772void
d7f50089
YY
4773pmap_remove_all(vm_page_t m)
4774{
c2830aa6 4775 long icount;
e3c330f0
MD
4776 int retry;
4777
427fbc33 4778 if (__predict_false(!pmap_initialized))
c8fe38ae 4779 return;
831a8507
MD
4780
4781 /*
4782 * pmap_count doesn't cover fictitious pages, but PG_MAPPED does
4783 * (albeit without certain race protections).
4784 */
4785#if 0
567a6398
MD
4786 if (m->md.pmap_count == 0)
4787 return;
831a8507
MD
4788#endif
4789 if ((m->flags & PG_MAPPED) == 0)
4790 return;
e3c330f0
MD
4791
4792 retry = ticks + hz * 60;
4793again:
567a6398
MD
4794 PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
4795 if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, 0))
4796 PMAP_PAGE_BACKING_RETRY;
4797 if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) {
4798 if (ipte & ipmap->pmap_bits[PG_M_IDX])
4799 vm_page_dirty(m);
4800 if (ipte & ipmap->pmap_bits[PG_A_IDX])
4801 vm_page_flag_set(m, PG_REFERENCED);
e3c330f0
MD
4802
4803 /*
4804 * NOTE: m is not hard-busied so it is not safe to
4805 * clear PG_MAPPED and PG_WRITEABLE on the 1->0
4806 * transition against them being set in
4807 * pmap_enter().
4808 */
c2830aa6 4809 pmap_removed_pte(m, ipte);
b12defdc 4810 }
e3e69557 4811
b12defdc 4812 /*
567a6398
MD
4813 * Cleanup various tracking counters. pt_pv can't go away
4814 * due to our wired ref.
b12defdc 4815 */
c713db65 4816 if (ipmap != kernel_pmap) {
567a6398 4817 pv_entry_t pt_pv;
67e7cb85 4818
567a6398
MD
4819 spin_lock_shared(&ipmap->pm_spin);
4820 pt_pv = pv_entry_lookup(ipmap, pmap_pt_pindex(iva));
4821 spin_unlock_shared(&ipmap->pm_spin);
4822
4823 if (pt_pv) {
e3c330f0
MD
4824 if (vm_page_unwire_quick(pt_pv->pv_m)) {
4825 panic("pmap_remove_all: bad "
4826 "wire_count on pt_pv");
4827 }
567a6398
MD
4828 atomic_add_long(
4829 &ipmap->pm_stats.resident_count, -1);
67e7cb85 4830 }
67e7cb85 4831 }
567a6398
MD
4832 if (ipte & ipmap->pmap_bits[PG_W_IDX])
4833 atomic_add_long(&ipmap->pm_stats.wired_count, -1);
4834 if (ipte & ipmap->pmap_bits[PG_G_IDX])
4835 cpu_invlpg((void *)iva);
4836 } PMAP_PAGE_BACKING_DONE;
e3c330f0 4837
c2830aa6
MD
4838 /*
4839 * If our scan lost a pte swap race oldm->md.interlock_count might
4840 * be set from the pmap_enter() code. If so sleep a little and try
4841 * again.
4842 */
4843 icount = atomic_fetchadd_long(&m->md.interlock_count,
4844 0x8000000000000000LU) +
4845 0x8000000000000000LU;
4846 cpu_ccfence();
4847 while (icount & 0x3FFFFFFFFFFFFFFFLU) {
4848 tsleep_interlock(&m->md.interlock_count, 0);
4849 if (atomic_fcmpset_long(&m->md.interlock_count, &icount,
4850 icount | 0x4000000000000000LU)) {
4851 tsleep(&m->md.interlock_count, PINTERLOCKED,
4852 "pgunm", 1);
4853 icount = m->md.interlock_count;
4854 if (retry - ticks > 0)
4855 goto again;
4856 panic("pmap_remove_all: cannot return interlock_count "
4857 "to 0 (%p, %ld)",
4858 m, m->md.interlock_count);
4859 }
4860 }
c2830aa6 4861 vm_page_flag_clear(m, PG_MAPPED | PG_MAPPEDMULTI | PG_WRITEABLE);
d7f50089
YY
4862}
4863
a7a03a5f 4864/*
567a6398
MD
4865 * Removes the page from a particular pmap.
4866 *
4867 * The page must be busied by the caller.
a7a03a5f
MD
4868 */
4869void
567a6398 4870pmap_remove_specific(pmap_t pmap_match, vm_page_t m)
a7a03a5f 4871{
427fbc33 4872 if (__predict_false(!pmap_initialized))
a7a03a5f 4873 return;
831a8507
MD
4874
4875 /*
4876 * PG_MAPPED test works for both non-fictitious and fictitious pages.
4877 */
4878 if ((m->flags & PG_MAPPED) == 0)
567a6398 4879 return;
831a8507 4880
567a6398
MD
4881 PMAP_PAGE_BACKING_SCAN(m, pmap_match, ipmap, iptep, ipte, iva) {
4882 if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, 0))
4883 PMAP_PAGE_BACKING_RETRY;
4884 if (ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) {
4885 if (ipte & ipmap->pmap_bits[PG_M_IDX])
4886 vm_page_dirty(m);
4887 if (ipte & ipmap->pmap_bits[PG_A_IDX])
4888 vm_page_flag_set(m, PG_REFERENCED);
e3c330f0
MD
4889
4890 /*
4891 * NOTE: m is not hard-busied so it is not safe to
4892 * clear PG_MAPPED and PG_WRITEABLE on the 1->0
4893 * transition against them being set in
4894 * pmap_enter().
4895 */
c2830aa6 4896 pmap_removed_pte(m, ipte);
a7a03a5f
MD
4897 }
4898
4899 /*
567a6398
MD
4900 * Cleanup various tracking counters. pt_pv can't go away
4901 * due to our wired ref.
a7a03a5f 4902 */
c713db65 4903 if (ipmap != kernel_pmap) {
567a6398
MD
4904 pv_entry_t pt_pv;
4905
4906 spin_lock_shared(&ipmap->pm_spin);
4907 pt_pv = pv_entry_lookup(ipmap, pmap_pt_pindex(iva));
4908 spin_unlock_shared(&ipmap->pm_spin);
4909
4910 if (pt_pv) {
4911 atomic_add_long(
4912 &ipmap->pm_stats.resident_count, -1);
e3c330f0
MD
4913 if (vm_page_unwire_quick(pt_pv->pv_m)) {
4914 panic("pmap_remove_specific: bad "
4915 "wire_count on pt_pv");
4916 }
567a6398
MD
4917 }
4918 }
4919 if (ipte & ipmap->pmap_bits[PG_W_IDX])
4920 atomic_add_long(&ipmap->pm_stats.wired_count, -1);
4921 if (ipte & ipmap->pmap_bits[PG_G_IDX])
4922 cpu_invlpg((void *)iva);
4923 } PMAP_PAGE_BACKING_DONE;
a7a03a5f
MD
4924}
4925
d7f50089 4926/*
921c891e
MD
4927 * Set the physical protection on the specified range of this map
4928 * as requested. This function is typically only used for debug watchpoints
4929 * and COW pages.
d7f50089 4930 *
921c891e
MD
4931 * This function may not be called from an interrupt if the map is
4932 * not the kernel_pmap.
d7f50089 4933 *
921c891e 4934 * NOTE! For shared page table pages we just unmap the page.
d7f50089
YY
4935 */
4936void
4937pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4938{
fb4ca018 4939 struct pmap_scan_info info;
48ffc236
JG
4940 /* JG review for NX */
4941
c8fe38ae
MD
4942 if (pmap == NULL)
4943 return;
73d64b98 4944 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
c8fe38ae
MD
4945 pmap_remove(pmap, sva, eva);
4946 return;
4947 }
c8fe38ae
MD
4948 if (prot & VM_PROT_WRITE)
4949 return;
fb4ca018
MD
4950 info.pmap = pmap;
4951 info.sva = sva;
4952 info.eva = eva;
4953 info.func = pmap_protect_callback;
4954 info.arg = &prot;
ccd67bf6 4955 pmap_scan(&info, 1);
701c977e 4956}
c8fe38ae 4957
701c977e
MD
4958static
4959void
9df83100 4960pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
567a6398
MD
4961 vm_pindex_t *pte_placemark,
4962 pv_entry_t pt_pv, vm_offset_t va,
4963 pt_entry_t *ptep, void *arg __unused)
701c977e
MD
4964{
4965 pt_entry_t pbits;
4966 pt_entry_t cbits;
4967 vm_page_t m;
c8fe38ae 4968
c2fb025d 4969again:
701c977e 4970 pbits = *ptep;
567a6398 4971 cpu_ccfence();
701c977e 4972 cbits = pbits;
567a6398
MD
4973 if (pbits & pmap->pmap_bits[PG_MANAGED_IDX]) {
4974 cbits &= ~pmap->pmap_bits[PG_A_IDX];
4975 cbits &= ~pmap->pmap_bits[PG_M_IDX];
c8fe38ae 4976 }
921c891e
MD
4977 /* else unmanaged page, adjust bits, no wire changes */
4978
4979 if (ptep) {
a86ce0cd 4980 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
a44410dd
MD
4981#ifdef PMAP_DEBUG2
4982 if (pmap_enter_debug > 0) {
4983 --pmap_enter_debug;
567a6398 4984 kprintf("pmap_protect va=%lx ptep=%p "
a44410dd 4985 "pt_pv=%p cbits=%08lx\n",
567a6398 4986 va, ptep, pt_pv, cbits
a44410dd
MD
4987 );
4988 }
4989#endif
79f2da03 4990 if (pbits != cbits) {
567a6398 4991 if (!pmap_inval_smp_cmpset(pmap, va,
79f2da03
MD
4992 ptep, pbits, cbits)) {
4993 goto again;
4994 }
921c891e 4995 }
567a6398 4996 if (pbits & pmap->pmap_bits[PG_MANAGED_IDX]) {
e3c330f0
MD
4997 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4998 if (pbits & pmap->pmap_bits[PG_A_IDX])
4999 vm_page_flag_set(m, PG_REFERENCED);
5000 if (pbits & pmap->pmap_bits[PG_M_IDX])
5001 vm_page_dirty(m);
567a6398 5002 }
701c977e 5003 }
567a6398 5004 pv_placemarker_wakeup(pmap, pte_placemark);
d7f50089
YY
5005}
5006
5007/*
701c977e
MD
5008 * Insert the vm_page (m) at the virtual address (va), replacing any prior
5009 * mapping at that address. Set protection and wiring as requested.
d7f50089 5010 *
921c891e
MD
5011 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
5012 * possible. If it is we enter the page into the appropriate shared pmap
5013 * hanging off the related VM object instead of the passed pmap, then we
5014 * share the page table page from the VM object's pmap into the current pmap.
5015 *
701c977e
MD
5016 * NOTE: This routine MUST insert the page into the pmap now, it cannot
5017 * lazy-evaluate.
d7f50089
YY
5018 */
5019void
5020pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
07b67fa6 5021 boolean_t wired, vm_map_entry_t entry)
701c977e 5022{
701c977e
MD
5023 pv_entry_t pt_pv; /* page table */
5024 pv_entry_t pte_pv; /* page table entry */
76f1911e 5025 vm_pindex_t *pte_placemark;
701c977e 5026 pt_entry_t *ptep;
e3c330f0 5027 pt_entry_t origpte;
c8fe38ae 5028 vm_paddr_t opa;
e3c330f0
MD
5029 vm_page_t oldm;
5030 pt_entry_t newpte;
701c977e 5031 vm_paddr_t pa;
c2830aa6
MD
5032 int flags;
5033 int nflags;
c8fe38ae
MD
5034
5035 if (pmap == NULL)
5036 return;
48ffc236 5037 va = trunc_page(va);
c8fe38ae
MD
5038#ifdef PMAP_DIAGNOSTIC
5039 if (va >= KvaEnd)
5040 panic("pmap_enter: toobig");
5041 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
701c977e
MD
5042 panic("pmap_enter: invalid to pmap_enter page table "
5043 "pages (va: 0x%lx)", va);
c8fe38ae 5044#endif
c713db65 5045 if (va < UPT_MAX_ADDRESS && pmap == kernel_pmap) {
701c977e
MD
5046 kprintf("Warning: pmap_enter called on UVA with "
5047 "kernel_pmap\n");
48ffc236 5048#ifdef DDB
4a3a2ba2 5049 print_backtrace(-1);
48ffc236 5050#endif
c8fe38ae 5051 }
c713db65 5052 if (va >= UPT_MAX_ADDRESS && pmap != kernel_pmap) {
701c977e
MD
5053 kprintf("Warning: pmap_enter called on KVA without"
5054 "kernel_pmap\n");
48ffc236 5055#ifdef DDB
4a3a2ba2 5056 print_backtrace(-1);
48ffc236 5057#endif
c8fe38ae
MD
5058 }
5059
5060 /*
567a6398
MD
5061 * Get the locked page table page (pt_pv) for our new page table
5062 * entry, allocating it if necessary.
701c977e 5063 *
567a6398
MD
5064 * There is no pte_pv for a terminal pte so the terminal pte will
5065 * be locked via pte_placemark.
701c977e 5066 *
567a6398
MD
5067 * Only MMU actions by the CPU itself can modify the ptep out from
5068 * under us.
701c977e
MD
5069 *
5070 * If the pmap is still being initialized we assume existing
5071 * page tables.
5072 *
567a6398
MD
5073 * NOTE: Kernel mapppings do not track page table pages
5074 * (i.e. there is no pt_pv pt_pv structure).
e989b548 5075 *
567a6398
MD
5076 * NOTE: origpte here is 'tentative', used only to check for
5077 * the degenerate case where the entry already exists and
5078 * matches.
701c977e 5079 */
427fbc33 5080 if (__predict_false(pmap_initialized == FALSE)) {
701c977e
MD
5081 pte_pv = NULL;
5082 pt_pv = NULL;
76f1911e 5083 pte_placemark = NULL;
701c977e 5084 ptep = vtopte(va);
8e2efb11 5085 origpte = *ptep;
567a6398 5086 } else {
76f1911e
MD
5087 pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
5088 KKASSERT(pte_pv == NULL);
701c977e
MD
5089 if (va >= VM_MAX_USER_ADDRESS) {
5090 pt_pv = NULL;
5091 ptep = vtopte(va);
5092 } else {
567a6398 5093 pt_pv = pmap_allocpte(pmap, pmap_pt_pindex(va), NULL);
701c977e
MD
5094 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5095 }
8e2efb11
MD
5096 origpte = *ptep;
5097 cpu_ccfence();
701c977e 5098 }
c8fe38ae 5099
48ffc236 5100 pa = VM_PAGE_TO_PHYS(m);
c8fe38ae 5101
5ee06c6c 5102 /*
567a6398 5103 * Calculate the new PTE.
5ee06c6c 5104 */
a86ce0cd 5105 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
8e2efb11 5106 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
52bb73bc 5107 if (wired)
a86ce0cd 5108 newpte |= pmap->pmap_bits[PG_W_IDX];
52bb73bc 5109 if (va < VM_MAX_USER_ADDRESS)
a86ce0cd 5110 newpte |= pmap->pmap_bits[PG_U_IDX];
831a8507 5111 if ((m->flags & PG_FICTITIOUS) == 0)
a86ce0cd 5112 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
c713db65 5113// if (pmap == kernel_pmap)
a86ce0cd 5114// newpte |= pgeflag;
c2ec3418 5115 newpte |= pmap->pmap_cache_bits_pte[m->pat_mode];
52bb73bc 5116
c8fe38ae 5117 /*
52bb73bc
MD
5118 * It is possible for multiple faults to occur in threaded
5119 * environments, the existing pte might be correct.
c8fe38ae 5120 */
e989b548
MD
5121 if (((origpte ^ newpte) &
5122 ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
5123 pmap->pmap_bits[PG_A_IDX])) == 0) {
52bb73bc 5124 goto done;
e989b548 5125 }
c8fe38ae 5126
e3c330f0
MD
5127 /*
5128 * Adjust page flags. The page is soft-busied or hard-busied, we
5129 * should be able to safely set PG_* flag bits even with the (shared)
5130 * soft-busy.
5131 *
831a8507
MD
5132 * The pmap_count and writeable_count is only tracked for
5133 * non-fictitious pages. As a bit of a safety, bump pmap_count
5134 * and set the PG_* bits before mapping the page. If another part
5135 * of the system does not properly hard-busy the page (against our
5136 * soft-busy or hard-busy) in order to remove mappings it might not
5137 * see the pte that we are about to add and thus will not be able to
5138 * drop pmap_count to 0.
5139 *
5140 * The PG_MAPPED and PG_WRITEABLE flags are set for any type of page.
e3c330f0
MD
5141 *
5142 * NOTE! PG_MAPPED and PG_WRITEABLE can only be cleared when
5143 * the page is hard-busied AND pmap_count is 0. This
5144 * interlocks our setting of the flags here.
5145 */
5146 /*vm_page_spin_lock(m);*/
c2830aa6
MD
5147
5148 /*
5149 * In advanced mode we keep track of single mappings verses
5150 * multiple mappings in order to avoid unnecessary vm_page_protect()
5151 * calls (particularly on the kernel_map).
5152 *
5153 * If non-advanced mode we track the mapping count for similar effect.
427fbc33
MD
5154 *
5155 * Avoid modifying the vm_page as much as possible, conditionalize
5156 * updates to reduce cache line ping-ponging.
c2830aa6 5157 */
c2830aa6
MD
5158 flags = m->flags;
5159 cpu_ccfence();
5160 for (;;) {
5161 nflags = PG_MAPPED;
5162 if (newpte & pmap->pmap_bits[PG_RW_IDX])
5163 nflags |= PG_WRITEABLE;
5164 if (flags & PG_MAPPED)
5165 nflags |= PG_MAPPEDMULTI;
427fbc33
MD
5166 if (flags == (flags | nflags))
5167 break;
c2830aa6
MD
5168 if (atomic_fcmpset_int(&m->flags, &flags, flags | nflags))
5169 break;
5170 }
e3c330f0 5171 /*vm_page_spin_unlock(m);*/
e3c330f0
MD
5172
5173 /*
5174 * A race can develop when replacing an existing mapping. The new
5175 * page has been busied and the pte is placemark-locked, but the
c2830aa6 5176 * old page could be ripped out from under us at any time by
e3c330f0
MD
5177 * a backing scan.
5178 *
b9a6fe08
SW
5179 * If we do nothing, a concurrent backing scan may clear
5180 * PG_WRITEABLE and PG_MAPPED before we can act on oldm.
e3c330f0
MD
5181 */
5182 opa = origpte & PG_FRAME;
5183 if (opa && (origpte & pmap->pmap_bits[PG_MANAGED_IDX])) {
5184 oldm = PHYS_TO_VM_PAGE(opa);
5185 KKASSERT(opa == oldm->phys_addr);
5186 KKASSERT(entry != NULL);
c2830aa6 5187 atomic_add_long(&oldm->md.interlock_count, 1);
e3c330f0
MD
5188 } else {
5189 oldm = NULL;
5190 }
5191
c8fe38ae 5192 /*
567a6398
MD
5193 * Swap the new and old PTEs and perform any necessary SMP
5194 * synchronization.
701c977e 5195 */
567a6398
MD
5196 if ((prot & VM_PROT_NOSYNC) || (opa == 0 && pt_pv != NULL)) {
5197 /*
5198 * Explicitly permitted to avoid pmap cpu mask synchronization
5199 * or the prior content of a non-kernel-related pmap was
5200 * invalid.
5201 */
5202 origpte = atomic_swap_long(ptep, newpte);
5203 if (opa)
5204 cpu_invlpg((void *)va);
5205 } else {
5206 /*
5207 * Not permitted to avoid pmap cpu mask synchronization
5208 * or there prior content being replaced or this is a kernel
5209 * related pmap.
5210 *
5211 * Due to other kernel optimizations, we cannot assume a
5212 * 0->non_zero transition of *ptep can be done with a swap.
5213 */
5214 origpte = pmap_inval_smp(pmap, va, 1, ptep, newpte);
c8fe38ae 5215 }
567a6398 5216 opa = origpte & PG_FRAME;
c8fe38ae 5217
a44410dd
MD
5218#ifdef PMAP_DEBUG2
5219 if (pmap_enter_debug > 0) {
5220 --pmap_enter_debug;
5221 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
5222 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
5223 va, m,
5224 origpte, newpte, ptep,
5225 pte_pv, pt_pv, opa, prot);
5226 }
5227#endif
5228
567a6398
MD
5229 /*
5230 * Account for the changes in the pt_pv and pmap.
5231 *
5232 * Retain the same wiring count due to replacing an existing page,
5233 * or bump the wiring count for a new page.
5234 */
567a6398
MD
5235 if (pt_pv && opa == 0) {
5236 vm_page_wire_quick(pt_pv->pv_m);
5237 atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
5238 }
5239 if (wired && (origpte & pmap->pmap_bits[PG_W_IDX]) == 0)
5240 atomic_add_long(&pmap->pm_stats.wired_count, 1);
e989b548 5241
c8fe38ae 5242 /*
567a6398
MD
5243 * Account for the removal of the old page. pmap and pt_pv stats
5244 * have already been fully adjusted for both.
921c891e 5245 *
e3c330f0
MD
5246 * WARNING! oldm is not soft or hard-busied. The pte at worst can
5247 * only be removed out from under us since we hold the
5248 * placemarker. So if it is still there, it must not have
5249 * changed.
c2830aa6 5250 *
b9a6fe08
SW
5251 * WARNING! A backing scan can clear PG_WRITEABLE and/or PG_MAPPED
5252 * and rip oldm away from us, possibly even freeing or
5253 * paging it, and not setting our dirtying below.
c2830aa6
MD
5254 *
5255 * To deal with this, oldm->md.interlock_count is bumped
5256 * to indicate that we might (only might) have won the pte
5257 * swap race, and then released below.
c8fe38ae 5258 */
567a6398 5259 if (opa && (origpte & pmap->pmap_bits[PG_MANAGED_IDX])) {
e3c330f0 5260 KKASSERT(oldm == PHYS_TO_VM_PAGE(opa));
e3c330f0 5261 if (origpte & pmap->pmap_bits[PG_M_IDX])
567a6398 5262 vm_page_dirty(oldm);
e3c330f0
MD
5263 if (origpte & pmap->pmap_bits[PG_A_IDX])
5264 vm_page_flag_set(oldm, PG_REFERENCED);
5265
5266 /*
5267 * NOTE: oldm is not hard-busied so it is not safe to
5268 * clear PG_MAPPED and PG_WRITEABLE on the 1->0
5269 * transition against them being set in
5270 * pmap_enter().
5271 */
c2830aa6
MD
5272 pmap_removed_pte(oldm, origpte);
5273 }
c2830aa6
MD
5274 if (oldm) {
5275 if ((atomic_fetchadd_long(&oldm->md.interlock_count, -1) &
5276 0x7FFFFFFFFFFFFFFFLU) == 0x4000000000000001LU) {
5277 atomic_clear_long(&oldm->md.interlock_count,
5278 0x4000000000000000LU);
5279 wakeup(&oldm->md.interlock_count);
5280 }
79f2da03 5281 }
c8fe38ae 5282
52bb73bc 5283done:
8e2efb11
MD
5284 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5285 (m->flags & PG_MAPPED));
701c977e
MD
5286
5287 /*
e989b548
MD
5288 * Cleanup the pv entry, allowing other accessors. If the new page
5289 * is not managed but we have a pte_pv (which was locking our
5290 * operation), we can free it now. pte_pv->pv_m should be NULL.
701c977e 5291 */
567a6398 5292 if (pte_placemark)
76f1911e 5293 pv_placemarker_wakeup(pmap, pte_placemark);
701c977e
MD
5294 if (pt_pv)
5295 pv_put(pt_pv);
d7f50089
YY
5296}
5297
d7f50089 5298/*
c8fe38ae
MD
5299 * Make a temporary mapping for a physical address. This is only intended
5300 * to be used for panic dumps.
fb8345e6
MD
5301 *
5302 * The caller is responsible for calling smp_invltlb().
d7f50089 5303 */
c8fe38ae 5304void *
8e5ea5f7 5305pmap_kenter_temporary(vm_paddr_t pa, long i)
d7f50089 5306{
fb8345e6 5307 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
c8fe38ae 5308 return ((void *)crashdumpmap);
d7f50089
YY
5309}
5310
e3c330f0 5311#if 0
c8fe38ae
MD
5312#define MAX_INIT_PT (96)
5313
d7f50089
YY
5314/*
5315 * This routine preloads the ptes for a given object into the specified pmap.
5316 * This eliminates the blast of soft faults on process startup and
5317 * immediately after an mmap.
5318 */
5319static int pmap_object_init_pt_callback(vm_page_t p, void *data);
e3c330f0 5320#endif
d7f50089
YY
5321
5322void
530e94fc
MD
5323pmap_object_init_pt(pmap_t pmap, vm_map_entry_t entry,
5324 vm_offset_t addr, vm_size_t size, int limit)
d7f50089 5325{
e3c330f0 5326#if 0
530e94fc
MD
5327 vm_prot_t prot = entry->protection;
5328 vm_object_t object = entry->ba.object;
5329 vm_pindex_t pindex = atop(entry->ba.offset + (addr - entry->ba.start));
c8fe38ae
MD
5330 struct rb_vm_page_scan_info info;
5331 struct lwp *lp;
48ffc236 5332 vm_size_t psize;
c8fe38ae
MD
5333
5334 /*
5335 * We can't preinit if read access isn't set or there is no pmap
5336 * or object.
5337 */
5338 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5339 return;
5340
5341 /*
5342 * We can't preinit if the pmap is not the current pmap
5343 */
5344 lp = curthread->td_lwp;
5345 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5346 return;
5347
921c891e
MD
5348 /*
5349 * Misc additional checks
5350 */
b2b3ffcd 5351 psize = x86_64_btop(size);
c8fe38ae
MD
5352
5353 if ((object->type != OBJT_VNODE) ||
5354 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5355 (object->resident_page_count > MAX_INIT_PT))) {
5356 return;
5357 }
5358
701c977e 5359 if (pindex + psize > object->size) {
c8fe38ae
MD
5360 if (object->size < pindex)
5361 return;
5362 psize = object->size - pindex;
5363 }
5364
5365 if (psize == 0)
5366 return;
5367
921c891e
MD
5368 /*
5369 * If everything is segment-aligned do not pre-init here. Instead
5370 * allow the normal vm_fault path to pass a segment hint to
5371 * pmap_enter() which will then use an object-referenced shared
5372 * page table page.
5373 */
5374 if ((addr & SEG_MASK) == 0 &&
5375 (ctob(psize) & SEG_MASK) == 0 &&
5376 (ctob(pindex) & SEG_MASK) == 0) {
5377 return;
5378 }
5379
c8fe38ae
MD
5380 /*
5381 * Use a red-black scan to traverse the requested range and load
5382 * any valid pages found into the pmap.
5383 *
a5fc46c9
MD
5384 * We cannot safely scan the object's memq without holding the
5385 * object token.
c8fe38ae
MD
5386 */
5387 info.start_pindex = pindex;
5388 info.end_pindex = pindex + psize - 1;
5389 info.limit = limit;
5390 info.mpte = NULL;
5391 info.addr = addr;
5392 info.pmap = pmap;
bb1339f8 5393 info.object = object;
530e94fc 5394 info.entry = entry;
c8fe38ae 5395
bb1339f8
MD
5396 /*
5397 * By using the NOLK scan, the callback function must be sure
5398 * to return -1 if the VM page falls out of the object.
5399 */
54341a3b 5400 vm_object_hold_shared(object);
bb1339f8
MD
5401 vm_page_rb_tree_RB_SCAN_NOLK(&object->rb_memq, rb_vm_page_scancmp,
5402 pmap_object_init_pt_callback, &info);
a5fc46c9 5403 vm_object_drop(object);
e3c330f0 5404#endif
d7f50089
YY
5405}
5406
e3c330f0
MD
5407#if 0
5408
d7f50089
YY
5409static
5410int
5411pmap_object_init_pt_callback(vm_page_t p, void *data)
5412{
c8fe38ae
MD
5413 struct rb_vm_page_scan_info *info = data;
5414 vm_pindex_t rel_index;
bb1339f8 5415 int hard_busy;
b12defdc 5416
c8fe38ae
MD
5417 /*
5418 * don't allow an madvise to blow away our really
5419 * free pages allocating pv entries.
5420 */
5421 if ((info->limit & MAP_PREFAULT_MADVISE) &&
5422 vmstats.v_free_count < vmstats.v_free_reserved) {
5423 return(-1);
5424 }
0d987a03
MD
5425
5426 /*
5427 * Ignore list markers and ignore pages we cannot instantly
5428 * busy (while holding the object token).
5429 */
5430 if (p->flags & PG_MARKER)
5431 return 0;
bb1339f8
MD
5432 hard_busy = 0;
5433again:
5434 if (hard_busy) {
5435 if (vm_page_busy_try(p, TRUE))
5436 return 0;
5437 } else {
5438 if (vm_page_sbusy_try(p))
5439 return 0;
5440 }
c8fe38ae 5441 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
b12defdc 5442 (p->flags & PG_FICTITIOUS) == 0) {
bb1339f8
MD
5443 if ((p->queue - p->pc) == PQ_CACHE) {
5444 if (hard_busy == 0) {
5445 vm_page_sbusy_drop(p);
5446 hard_busy = 1;
5447 goto again;
5448 }
c8fe38ae 5449 vm_page_deactivate(p);
bb1339f8 5450 }
c8fe38ae 5451 rel_index = p->pindex - info->start_pindex;
530e94fc
MD
5452 pmap_enter(info->pmap, info->addr + x86_64_ptob(rel_index), p,
5453 VM_PROT_READ, FALSE, info->entry);
c8fe38ae 5454 }
bb1339f8
MD
5455 if (hard_busy)
5456 vm_page_wakeup(p);
5457 else
5458 vm_page_sbusy_drop(p);
5459
5460 /*
5461 * We are using an unlocked scan (that is, the scan expects its
5462 * current element to remain in the tree on return). So we have
5463 * to check here and abort the scan if it isn't.
5464 */
5465 if (p->object != info->object)
5466 return -1;
fc9ed34d 5467 lwkt_yield();
d7f50089
YY
5468 return(0);
5469}
5470
e3c330f0
MD
5471#endif
5472
d7f50089 5473/*
701c977e
MD
5474 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5475 * address.
1b9d3514 5476 *
701c977e
MD
5477 * Returns FALSE if it would be non-trivial or if a pte is already loaded
5478 * into the slot.
54341a3b 5479 *
e3c330f0
MD
5480 * The address must reside within a vm_map mapped range to ensure that the
5481 * page table doesn't get ripped out from under us.
5482 *
54341a3b 5483 * XXX This is safe only because page table pages are not freed.
d7f50089 5484 */
1b9d3514
MD
5485int
5486pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
d7f50089 5487{
1b9d3514 5488 pt_entry_t *pte;
c8fe38ae 5489
54341a3b 5490 /*spin_lock(&pmap->pm_spin);*/
701c977e 5491 if ((pte = pmap_pte(pmap, addr)) != NULL) {
a86ce0cd 5492 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
54341a3b 5493 /*spin_unlock(&pmap->pm_spin);*/
701c977e
MD
5494 return FALSE;
5495 }
10d6182e 5496 }
54341a3b 5497 /*spin_unlock(&pmap->pm_spin);*/
701c977e 5498 return TRUE;
d7f50089
YY
5499}
5500
5501/*
701c977e 5502 * Change the wiring attribute for a pmap/va pair. The mapping must already
76f1911e
MD
5503 * exist in the pmap. The mapping may or may not be managed. The wiring in
5504 * the page is not changed, the page is returned so the caller can adjust
5505 * its wiring (the page is not locked in any way).
582f286d
MD
5506 *
5507 * Wiring is not a hardware characteristic so there is no need to invalidate
5508 * TLB. However, in an SMP environment we must use a locked bus cycle to
5509 * update the pte (if we are not using the pmap_inval_*() API that is)...
5510 * it's ok to do this for simple wiring changes.
d7f50089 5511 */
76f1911e
MD
5512vm_page_t
5513pmap_unwire(pmap_t pmap, vm_offset_t va)
d7f50089 5514{
701c977e 5515 pt_entry_t *ptep;
76f1911e
MD
5516 pv_entry_t pt_pv;
5517 vm_paddr_t pa;
5518 vm_page_t m;
c8fe38ae
MD
5519
5520 if (pmap == NULL)
76f1911e 5521 return NULL;
582f286d 5522
76f1911e
MD
5523 /*
5524 * Assume elements in the kernel pmap are stable
5525 */
c713db65 5526 if (pmap == kernel_pmap) {
76f1911e
MD
5527 if (pmap_pt(pmap, va) == 0)
5528 return NULL;
582f286d 5529 ptep = pmap_pte_quick(pmap, va);
62443eb5
MD
5530 if (pmap_pte_v(pmap, ptep)) {
5531 if (pmap_pte_w(pmap, ptep))
5532 atomic_add_long(&pmap->pm_stats.wired_count,-1);
5533 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5534 pa = *ptep & PG_FRAME;
5535 m = PHYS_TO_VM_PAGE(pa);
5536 } else {
5537 m = NULL;
5538 }
582f286d
MD
5539 } else {
5540 /*
76f1911e
MD
5541 * We can only [un]wire pmap-local pages (we cannot wire
5542 * shared pages)
582f286d 5543 */
76f1911e
MD
5544 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5545 if (pt_pv == NULL)
5546 return NULL;
5547
5548 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5549 if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5550 pv_put(pt_pv);
5551 return NULL;
5552 }
582f286d 5553
76f1911e
MD
5554 if (pmap_pte_w(pmap, ptep)) {
5555 atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5556 -1);
5557 }
5558 /* XXX else return NULL so caller doesn't unwire m ? */
582f286d 5559
76f1911e
MD
5560 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5561
5562 pa = *ptep & PG_FRAME;
5563 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
5564 pv_put(pt_pv);
582f286d 5565 }
76f1911e 5566 return m;
d7f50089
YY
5567}
5568
5569/*
a5fc46c9
MD
5570 * Copy the range specified by src_addr/len from the source map to
5571 * the range dst_addr/len in the destination map.
d7f50089 5572 *
a5fc46c9 5573 * This routine is only advisory and need not do anything.
d7f50089
YY
5574 */
5575void
5576pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
bfc09ba0 5577 vm_size_t len, vm_offset_t src_addr)
d7f50089
YY
5578{
5579}
5580
5581/*
5582 * pmap_zero_page:
5583 *
48ffc236 5584 * Zero the specified physical page.
d7f50089
YY
5585 *
5586 * This function may be called from an interrupt and no locking is
5587 * required.
5588 */
5589void
5590pmap_zero_page(vm_paddr_t phys)
5591{
48ffc236 5592 vm_offset_t va = PHYS_TO_DMAP(phys);
c8fe38ae 5593
48ffc236 5594 pagezero((void *)va);
d7f50089
YY
5595}
5596
d7f50089
YY
5597/*
5598 * pmap_zero_page:
5599 *
5600 * Zero part of a physical page by mapping it into memory and clearing
5601 * its contents with bzero.
5602 *
5603 * off and size may not cover an area beyond a single hardware page.
5604 */
5605void
5606pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5607{
48ffc236 5608 vm_offset_t virt = PHYS_TO_DMAP(phys);
bfc09ba0 5609
48ffc236 5610 bzero((char *)virt + off, size);
d7f50089
YY
5611}
5612
5613/*
5614 * pmap_copy_page:
5615 *
5616 * Copy the physical page from the source PA to the target PA.
5617 * This function may be called from an interrupt. No locking
5618 * is required.
5619 */
5620void
5621pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5622{
48ffc236 5623 vm_offset_t src_virt, dst_virt;
c8fe38ae 5624
48ffc236
JG
5625 src_virt = PHYS_TO_DMAP(src);
5626 dst_virt = PHYS_TO_DMAP(dst);
bfc09ba0 5627 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
d7f50089
YY
5628}
5629
5630/*
5631 * pmap_copy_page_frag:
5632 *
5633 * Copy the physical page from the source PA to the target PA.
5634 * This function may be called from an interrupt. No locking
5635 * is required.
5636 */
5637void
5638pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5639{
48ffc236 5640 vm_offset_t src_virt, dst_virt;
c8fe38ae 5641
48ffc236
JG
5642 src_virt = PHYS_TO_DMAP(src);
5643 dst_virt = PHYS_TO_DMAP(dst);
bfc09ba0 5644
48ffc236
JG
5645 bcopy((char *)src_virt + (src & PAGE_MASK),
5646 (char *)dst_virt + (dst & PAGE_MASK),
c8fe38ae 5647 bytes);
d7f50089
YY
5648}
5649
d7f50089 5650/*
b12defdc 5651 * Remove all pages from specified address space this aids process exit
701c977e
MD
5652 * speeds. Also, this code may be special cased for the current process
5653 * only.
d7f50089
YY
5654 */
5655void
5656pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5657{
9df83100
MD
5658 pmap_remove_noinval(pmap, sva, eva);
5659 cpu_invltlb();
d7f50089
YY
5660}
5661
5662/*
a5fc46c9
MD
5663 * pmap_testbit tests bits in pte's note that the testbit/clearbit
5664 * routines are inline, and a lot of things compile-time evaluate.
c2830aa6
MD
5665 *
5666 * Currently only used to test the 'M'odified bit. If the page
5667 * is not PG_WRITEABLE, the 'M'odified bit cannot be set and we
5668 * return immediately. Fictitious pages do not track this bit.
d7f50089 5669 */
bfc09ba0
MD
5670static
5671boolean_t
d7f50089
YY
5672pmap_testbit(vm_page_t m, int bit)
5673{
567a6398 5674 int res = FALSE;
c8fe38ae 5675
427fbc33 5676 if (__predict_false(!pmap_initialized || (m->flags & PG_FICTITIOUS)))
c8fe38ae 5677 return FALSE;
e3c330f0
MD
5678 /*
5679 * Nothing to do if all the mappings are already read-only.
5680 * The page's [M]odify bits have already been synchronized
5681 * to the vm_page_t and cleaned out.
5682 */
c2830aa6
MD
5683 if (bit == PG_M_IDX && (m->flags & PG_WRITEABLE) == 0)
5684 return FALSE;
e3c330f0
MD
5685
5686 /*
5687 * Iterate the mapping
5688 */
567a6398
MD
5689 PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5690 if (ipte & ipmap->pmap_bits[bit]) {
5691 res = TRUE;
5692 break;
701c977e 5693 }
567a6398
MD
5694 } PMAP_PAGE_BACKING_DONE;
5695 return res;
d7f50089
YY
5696}
5697
5698/*
f036b531 5699 * This routine is used to modify bits in ptes. Only one bit should be
831a8507
MD
5700 * specified. PG_RW requires special handling. This call works with
5701 * any sort of mapped page. PG_FICTITIOUS pages might not be optimal.
b12defdc 5702 *
701c977e 5703 * Caller must NOT hold any spin locks
567a6398
MD
5704 * Caller must hold (m) hard-busied
5705 *
5706 * NOTE: When clearing PG_M we could also (not implemented) drop
5707 * through to the PG_RW code and clear PG_RW too, forcing
5708 * a fault on write to redetect PG_M for virtual kernels, but
5709 * it isn't necessary since virtual kernels invalidate the
5710 * pte when they clear the VPTE_M bit in their virtual page
5711 * tables.
5712 *
5713 * NOTE: Does not re-dirty the page when clearing only PG_M.
5714 *
5715 * NOTE: Because we do not lock the pv, *pte can be in a state of
5716 * flux. Despite this the value of *pte is still somewhat
5717 * related while we hold the vm_page spin lock.
5718 *
5719 * *pte can be zero due to this race. Since we are clearing
5720 * bits we basically do no harm when this race occurs.
d7f50089 5721 */
bfc09ba0
MD
5722static __inline
5723void
a86ce0cd 5724pmap_clearbit(vm_page_t m, int bit_index)
d7f50089 5725{
567a6398 5726 pt_entry_t npte;
e3c330f0 5727 int retry;
c2830aa6 5728 long icount;
c8fe38ae 5729
e3c330f0 5730 /*
831a8507 5731 * Too early in the boot
e3c330f0 5732 */
427fbc33 5733 if (__predict_false(!pmap_initialized)) {
b443039b
MD
5734 if (bit_index == PG_RW_IDX)
5735 vm_page_flag_clear(m, PG_WRITEABLE);
c8fe38ae 5736 return;
b443039b 5737 }
c2830aa6
MD
5738 if ((m->flags & (PG_MAPPED | PG_WRITEABLE)) == 0)
5739 return;
e3c330f0
MD
5740
5741 /*
5742 * Being asked to clear other random bits, we don't track them
5743 * so we have to iterate.
c2830aa6 5744 *
b9a6fe08
SW
5745 * pmap_clear_reference() is called (into here) with the page
5746 * hard-busied to check whether the page is still mapped and
5747 * will clear PG_MAPPED and PG_WRITEABLE if it isn't.
e3c330f0 5748 */
a86ce0cd 5749 if (bit_index != PG_RW_IDX) {
c2830aa6 5750#if 0
c2830aa6
MD
5751 long icount;
5752
5753 icount = 0;
c2830aa6 5754#endif
567a6398 5755 PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
c2830aa6 5756#if 0
c2830aa6 5757 ++icount;
c2830aa6 5758#endif
567a6398
MD
5759 if (ipte & ipmap->pmap_bits[bit_index]) {
5760 atomic_clear_long(iptep,
5761 ipmap->pmap_bits[bit_index]);
f036b531 5762 }
567a6398 5763 } PMAP_PAGE_BACKING_DONE;
c2830aa6 5764#if 0
c2830aa6
MD
5765 if (icount == 0) {
5766 icount = atomic_fetchadd_long(&m->md.interlock_count,
5767 0x8000000000000000LU);
5768 if ((icount & 0x3FFFFFFFFFFFFFFFLU) == 0) {
5769 vm_page_flag_clear(m, PG_MAPPED |
5770 PG_MAPPEDMULTI |
5771 PG_WRITEABLE);
5772 }
5773 }
c2830aa6 5774#endif
f036b531
MD
5775 return;
5776 }
5777
e3c330f0
MD
5778 /*
5779 * Being asked to clear the RW bit.
5780 *
5781 * Nothing to do if all the mappings are already read-only
5782 */
c2830aa6
MD
5783 if ((m->flags & PG_WRITEABLE) == 0)
5784 return;
e3c330f0
MD
5785
5786 /*
5787 * Iterate the mappings and check.
5788 */
5789 retry = ticks + hz * 60;
5790again:
f036b531 5791 /*
567a6398
MD
5792 * Clear PG_RW. This also clears PG_M and marks the page dirty if
5793 * PG_M was set.
e3c330f0
MD
5794 *
5795 * Since the caller holds the page hard-busied we can safely clear
5796 * PG_WRITEABLE, and callers expect us to for the PG_RW_IDX path.
f036b531 5797 */
567a6398 5798 PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
831a8507 5799#if 0
e3c330f0
MD
5800 if ((ipte & ipmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5801 continue;
831a8507 5802#endif
567a6398 5803 if ((ipte & ipmap->pmap_bits[PG_RW_IDX]) == 0)
97c8c48c 5804 continue;
567a6398
MD
5805 npte = ipte & ~(ipmap->pmap_bits[PG_RW_IDX] |
5806 ipmap->pmap_bits[PG_M_IDX]);
5807 if (!pmap_inval_smp_cmpset(ipmap, iva, iptep, ipte, npte))
5808 PMAP_PAGE_BACKING_RETRY;
5809 if (ipte & ipmap->pmap_bits[PG_M_IDX])
f036b531 5810 vm_page_dirty(m);
e3c330f0
MD
5811
5812 /*
5813 * NOTE: m is not hard-busied so it is not safe to
5814 * clear PG_WRITEABLE on the 1->0 transition
5815 * against it being set in pmap_enter().
831a8507
MD
5816 *
5817 * pmap_count and writeable_count are only applicable
5818 * to non-fictitious pages (PG_MANAGED_IDX from pte)
e3c330f0 5819 */
567a6398 5820 } PMAP_PAGE_BACKING_DONE;
e3c330f0 5821
c2830aa6
MD
5822 /*
5823 * If our scan lost a pte swap race oldm->md.interlock_count might
5824 * be set from the pmap_enter() code. If so sleep a little and try
5825 * again.
5826 *
5827 * Use an atomic op to access interlock_count to ensure ordering.
5828 */
5829 icount = atomic_fetchadd_long(&m->md.interlock_count,
5830 0x8000000000000000LU) +
5831 0x8000000000000000LU;
5832 cpu_ccfence();
5833 while (icount & 0x3FFFFFFFFFFFFFFFLU) {
5834 tsleep_interlock(&m->md.interlock_count, 0);
5835 if (atomic_fcmpset_long(&m->md.interlock_count, &icount,
5836 icount | 0x4000000000000000LU)) {
5837 tsleep(&m->md.interlock_count, PINTERLOCKED,
5838 "pgunm", 1);
5839 icount = m->md.interlock_count;
5840 if (retry - ticks > 0)
5841 goto again;
5842 panic("pmap_clearbit: cannot return interlock_count "
5843 "to 0 (%p, %ld)",
5844 m, m->md.interlock_count);
5845 }
5846 }
567a6398 5847 vm_page_flag_clear(m, PG_WRITEABLE);
d7f50089
YY
5848}
5849
5850/*
b12defdc 5851 * Lower the permission for all mappings to a given page.
d7f50089 5852 *
567a6398
MD
5853 * Page must be hard-busied by caller. Because the page is busied by the
5854 * caller, this should not be able to race a pmap_enter().
d7f50089
YY
5855 */
5856void
5857pmap_page_protect(vm_page_t m, vm_prot_t prot)
5858{
48ffc236 5859 /* JG NX support? */
c8fe38ae
MD
5860 if ((prot & VM_PROT_WRITE) == 0) {
5861 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
b12defdc
MD
5862 /*
5863 * NOTE: pmap_clearbit(.. PG_RW) also clears
5864 * the PG_WRITEABLE flag in (m).
5865 */
a86ce0cd 5866 pmap_clearbit(m, PG_RW_IDX);
c8fe38ae
MD
5867 } else {
5868 pmap_remove_all(m);
5869 }
5870 }
d7f50089
YY
5871}
5872
5873vm_paddr_t
c8fe38ae 5874pmap_phys_address(vm_pindex_t ppn)
d7f50089 5875{
b2b3ffcd 5876 return (x86_64_ptob(ppn));
d7f50089
YY
5877}
5878
5879/*
b12defdc
MD
5880 * Return a count of reference bits for a page, clearing those bits.
5881 * It is not necessary for every reference bit to be cleared, but it
5882 * is necessary that 0 only be returned when there are truly no
5883 * reference bits set.
d7f50089 5884 *
b12defdc
MD
5885 * XXX: The exact number of bits to check and clear is a matter that
5886 * should be tested and standardized at some point in the future for
5887 * optimal aging of shared pages.
d7f50089 5888 *
b12defdc 5889 * This routine may not block.
d7f50089
YY
5890 */
5891int
5892pmap_ts_referenced(vm_page_t m)
5893{
567a6398
MD
5894 int rval = 0;
5895 pt_entry_t npte;
c8fe38ae 5896
427fbc33 5897 if (__predict_false(!pmap_initialized || (m->flags & PG_FICTITIOUS)))
567a6398
MD
5898 return rval;
5899 PMAP_PAGE_BACKING_SCAN(m, NULL, ipmap, iptep, ipte, iva) {
5900 if (ipte & ipmap->pmap_bits[PG_A_IDX]) {
5901 npte = ipte & ~ipmap->pmap_bits[PG_A_IDX];
5902 if (!atomic_cmpset_long(iptep, ipte, npte))
5903 PMAP_PAGE_BACKING_RETRY;
5904 ++rval;
5905 if (rval > 4)
701c977e
MD
5906 break;
5907 }
567a6398
MD
5908 } PMAP_PAGE_BACKING_DONE;
5909 return rval;
d7f50089
YY
5910}
5911
5912/*
5913 * pmap_is_modified:
5914 *
5915 * Return whether or not the specified physical page was modified
5916 * in any physical maps.
5917 */
5918boolean_t
5919pmap_is_modified(vm_page_t m)
5920{
10d6182e
MD
5921 boolean_t res;
5922
a86ce0cd 5923 res = pmap_testbit(m, PG_M_IDX);
10d6182e 5924 return (res);
d7f50089
YY
5925}
5926
5927/*
567a6398
MD
5928 * Clear the modify bit on the vm_page.
5929 *
5930 * The page must be hard-busied.
d7f50089
YY
5931 */
5932void
5933pmap_clear_modify(vm_page_t m)
5934{
a86ce0cd 5935 pmap_clearbit(m, PG_M_IDX);
d7f50089
YY
5936}
5937
5938/*
5939 * pmap_clear_reference:
5940 *
5941 * Clear the reference bit on the specified physical page.
5942 */
5943void
5944pmap_clear_reference(vm_page_t m)
5945{
a86ce0cd 5946 pmap_clearbit(m, PG_A_IDX);
d7f50089
YY
5947}
5948
d7f50089
YY
5949/*
5950 * Miscellaneous support routines follow
5951 */
5952
bfc09ba0
MD
5953static
5954void
d87f4462 5955x86_64_protection_init(void)
d7f50089 5956{
3e925ec2
MD
5957 uint64_t *kp;
5958 int prot;
d7f50089 5959
2620a64f
MD
5960 /*
5961 * NX supported? (boot time loader.conf override only)
d92e3890
MD
5962 *
5963 * -1 Automatic (sets mode 1)
5964 * 0 Disabled
5965 * 1 NX implemented, differentiates PROT_READ vs PROT_READ|PROT_EXEC
5966 * 2 NX implemented for all cases
2620a64f
MD
5967 */
5968 TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
d92e3890 5969 if ((amd_feature & AMDID_NX) == 0) {
2620a64f 5970 pmap_bits_default[PG_NX_IDX] = 0;
d92e3890
MD
5971 pmap_nx_enable = 0;
5972 } else if (pmap_nx_enable < 0) {
5973 pmap_nx_enable = 1; /* default to mode 1 (READ) */
5974 }
2620a64f 5975
3e925ec2
MD
5976 /*
5977 * 0 is basically read-only access, but also set the NX (no-execute)
5978 * bit when VM_PROT_EXECUTE is not specified.
5979 */
d7f50089 5980 kp = protection_codes;
a86ce0cd 5981 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
c8fe38ae
MD
5982 switch (prot) {
5983 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5984 /*
3e925ec2 5985 * This case handled elsewhere
c8fe38ae 5986 */
d92e3890 5987 *kp = 0;
3e925ec2 5988 break;
c8fe38ae 5989 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3e925ec2 5990 /*
d92e3890 5991 * Read-only is 0|NX (pmap_nx_enable mode >= 1)
3e925ec2 5992 */
d92e3890
MD
5993 if (pmap_nx_enable >= 1)
5994 *kp = pmap_bits_default[PG_NX_IDX];
3e925ec2 5995 break;
c8fe38ae
MD
5996 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5997 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3e925ec2
MD
5998 /*
5999 * Execute requires read access
6000 */
d92e3890 6001 *kp = 0;
c8fe38ae
MD
6002 break;
6003 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
c8fe38ae 6004 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3e925ec2
MD
6005 /*
6006 * Write without execute is RW|NX
d92e3890 6007 * (pmap_nx_enable mode >= 2)
3e925ec2 6008 */
d92e3890
MD
6009 *kp = pmap_bits_default[PG_RW_IDX];
6010 if (pmap_nx_enable >= 2)
6011 *kp |= pmap_bits_default[PG_NX_IDX];
3e925ec2 6012 break;
c8fe38ae 6013 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3e925ec2
MD
6014 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
6015 /*
6016 * Write with execute is RW
6017 */
d92e3890 6018 *kp = pmap_bits_default[PG_RW_IDX];
c8fe38ae
MD
6019 break;
6020 }
d92e3890 6021 ++kp;
d7f50089
YY
6022 }
6023}
6024
6025/*
6026 * Map a set of physical memory pages into the kernel virtual
6027 * address space. Return a pointer to where it is mapped. This
6028 * routine is intended to be used for mapping device memory,
6029 * NOT real memory.
6030 *
b524ca76
MD
6031 * NOTE: We can't use pgeflag unless we invalidate the pages one at
6032 * a time.
6033 *
6034 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
6035 * work whether the cpu supports PAT or not. The remaining PAT
6036 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
6037 * supports PAT.
d7f50089
YY
6038 */
6039void *
6040pmap_mapdev(vm_paddr_t pa, vm_size_t size)
6041{
b524ca76 6042 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
057877ac
JG
6043}
6044
6045void *
6046pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
b524ca76
MD
6047{
6048 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
6049}
6050
ac9e78e3
FT
6051void *
6052pmap_mapbios(vm_paddr_t pa, vm_size_t size)
6053{
6054 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
6055}
6056
1d400425
FT
6057/*
6058 * Map a set of physical memory pages into the kernel virtual
6059 * address space. Return a pointer to where it is mapped. This
6060 * routine is intended to be used for mapping device memory,
6061 * NOT real memory.
6062 */
b524ca76
MD
6063void *
6064pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
057877ac
JG
6065{
6066 vm_offset_t va, tmpva, offset;
6067 pt_entry_t *pte;
b524ca76 6068 vm_size_t tmpsize;
057877ac
JG
6069
6070 offset = pa & PAGE_MASK;
6071 size = roundup(offset + size, PAGE_SIZE);
6072
1eeaf6b2 6073 va = kmem_alloc_nofault(kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
057877ac
JG
6074 if (va == 0)
6075 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
6076
6077 pa = pa & ~PAGE_MASK;
b524ca76 6078 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
057877ac 6079 pte = vtopte(tmpva);
a86ce0cd 6080 *pte = pa |
c713db65
AL
6081 kernel_pmap->pmap_bits[PG_RW_IDX] |
6082 kernel_pmap->pmap_bits[PG_V_IDX] | /* pgeflag | */
6083 kernel_pmap->pmap_cache_bits_pte[mode];
b524ca76 6084 tmpsize -= PAGE_SIZE;
057877ac
JG
6085 tmpva += PAGE_SIZE;
6086 pa += PAGE_SIZE;
6087 }
c713db65 6088 pmap_invalidate_range(kernel_pmap, va, va + size);
1d400425 6089 pmap_invalidate_cache_range(va, va + size);
057877ac 6090
d7f50089
YY
6091 return ((void *)(va + offset));
6092}
6093
6094void
6095pmap_unmapdev(vm_offset_t va, vm_size_t size)
6096{
6097 vm_offset_t base, offset;
6098
48ffc236 6099 base = va & ~PAGE_MASK;
d7f50089
YY
6100 offset = va & PAGE_MASK;
6101 size = roundup(offset + size, PAGE_SIZE);
6102 pmap_qremove(va, size >> PAGE_SHIFT);
1eeaf6b2 6103 kmem_free(kernel_map, base, size);
d7f50089
YY
6104}
6105
ec1a31dd
FT
6106/*
6107 * Sets the memory attribute for the specified page.
6108 */
6109void
6110pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6111{
6112
6113 m->pat_mode = ma;
6114
6115 /*
6116 * If "m" is a normal page, update its direct mapping. This update
6117 * can be relied upon to perform any cache operations that are
6118 * required for data coherence.
6119 */
6120 if ((m->flags & PG_FICTITIOUS) == 0)
96acd33e 6121 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
ec1a31dd
FT
6122}
6123
b524ca76
MD
6124/*
6125 * Change the PAT attribute on an existing kernel memory map. Caller
6126 * must ensure that the virtual memory in question is not accessed
6127 * during the adjustment.
c2ec3418
MD
6128 *
6129 * If the va is within the DMAP we cannot use vtopte() because the DMAP
6130 * utilizes 2MB or 1GB pages. 2MB is forced atm so calculate the pd_entry
6131 * pointer based on that.
b524ca76
MD
6132 */
6133void
6134pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
6135{
6136 pt_entry_t *pte;
1d400425
FT
6137 vm_offset_t base;
6138 int changed = 0;
b524ca76
MD
6139
6140 if (va == 0)
6141 panic("pmap_change_attr: va is NULL");
1d400425 6142 base = trunc_page(va);
b524ca76 6143
c2ec3418
MD
6144 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6145 pd_entry_t *pd;
6146
6147 KKASSERT(va < DMapMaxAddress);
6148 pd = (pd_entry_t *)PHYS_TO_DMAP(DMPDphys);
6149 pd += (va - DMAP_MIN_ADDRESS) >> PDRSHIFT;
6150
6151 while ((long)count > 0) {
6152 *pd =
c713db65
AL
6153 (*pd & ~(pd_entry_t)(kernel_pmap->pmap_cache_mask_pde)) |
6154 kernel_pmap->pmap_cache_bits_pde[mode];
c2ec3418
MD
6155 count -= NBPDR / PAGE_SIZE;
6156 va += NBPDR;
6157 ++pd;
6158 }
6159 } else {
6160 while (count) {
6161 pte = vtopte(va);
6162 *pte =
c713db65
AL
6163 (*pte & ~(pt_entry_t)(kernel_pmap->pmap_cache_mask_pte)) |
6164 kernel_pmap->pmap_cache_bits_pte[mode];
c2ec3418
MD
6165 --count;
6166 va += PAGE_SIZE;
6167 }
b524ca76 6168 }
1d400425
FT
6169
6170 changed = 1; /* XXX: not optimal */
6171
6172 /*
6173 * Flush CPU caches if required to make sure any data isn't cached that
6174 * shouldn't be, etc.
6175 */
6176 if (changed) {
c713db65 6177 pmap_invalidate_range(kernel_pmap, base, va);
1d400425
FT
6178 pmap_invalidate_cache_range(base, va);
6179 }
b524ca76
MD
6180}
6181
d7f50089
YY
6182/*
6183 * perform the pmap work for mincore
6184 */
6185int
6186pmap_mincore(pmap_t pmap, vm_offset_t addr)
6187{
c8fe38ae
MD
6188 pt_entry_t *ptep, pte;
6189 vm_page_t m;
6190 int val = 0;
6191
6192 ptep = pmap_pte(pmap, addr);
d7f50089 6193
10d6182e 6194 if (ptep && (pte = *ptep) != 0) {
c8fe38ae
MD
6195 vm_offset_t pa;
6196
6197 val = MINCORE_INCORE;
c8fe38ae 6198 pa = pte & PG_FRAME;
831a8507 6199 if (pte & pmap->pmap_bits[PG_MANAGED_IDX])
9e5e1578 6200 m = PHYS_TO_VM_PAGE(pa);
831a8507
MD
6201 else
6202 m = NULL;
c8fe38ae
MD
6203
6204 /*
6205 * Modified by us
6206 */
a86ce0cd 6207 if (pte & pmap->pmap_bits[PG_M_IDX])
c8fe38ae 6208 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
831a8507 6209
c8fe38ae
MD
6210 /*
6211 * Modified by someone
6212 */
9e5e1578 6213 else if (m && (m->dirty || pmap_is_modified(m)))
c8fe38ae 6214 val |= MINCORE_MODIFIED_OTHER;
c8fe38ae
MD
6215
6216 /*
831a8507 6217 * Referenced by us, or someone else.
c8fe38ae 6218 */
831a8507
MD
6219 if (pte & pmap->pmap_bits[PG_A_IDX]) {
6220 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
6221 } else if (m && ((m->flags & PG_REFERENCED) ||
6222 pmap_ts_referenced(m))) {
c8fe38ae
MD
6223 val |= MINCORE_REFERENCED_OTHER;
6224 vm_page_flag_set(m, PG_REFERENCED);
6225 }
6226 }
6227 return val;
6228}
6229
6230/*
6231 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
6232 * vmspace will be ref'd and the old one will be deref'd.
6233 *
6234 * The vmspace for all lwps associated with the process will be adjusted
6235 * and cr3 will be reloaded if any lwp is the current lwp.
a5fc46c9 6236 *
b12defdc 6237 * The process must hold the vmspace->vm_map.token for oldvm and newvm
c8fe38ae 6238 */
d7f50089
YY
6239void
6240pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
6241{
c8fe38ae
MD
6242 struct vmspace *oldvm;
6243 struct lwp *lp;
6244
c8fe38ae
MD
6245 oldvm = p->p_vmspace;
6246 if (oldvm != newvm) {
a5fc46c9 6247 if (adjrefs)
93f86408 6248 vmspace_ref(newvm);
c8fe38ae
MD
6249 p->p_vmspace = newvm;
6250 KKASSERT(p->p_nthreads == 1);
6251 lp = RB_ROOT(&p->p_lwp_tree);
6252 pmap_setlwpvm(lp, newvm);
a5fc46c9 6253 if (adjrefs)
93f86408 6254 vmspace_rel(oldvm);
c8fe38ae 6255 }
d7f50089
YY
6256}
6257
c8fe38ae
MD
6258/*
6259 * Set the vmspace for a LWP. The vmspace is almost universally set the
6260 * same as the process vmspace, but virtual kernels need to swap out contexts
6261 * on a per-lwp basis.
a5fc46c9 6262 *
b12defdc 6263 * Caller does not necessarily hold any vmspace tokens. Caller must control
a5fc46c9
MD
6264 * the lwp (typically be in the context of the lwp). We use a critical
6265 * section to protect against statclock and hardclock (statistics collection).
c8fe38ae 6266 */
d7f50089
YY
6267void
6268pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
6269{
c8fe38ae
MD
6270 struct vmspace *oldvm;
6271 struct pmap *pmap;
4611d87f 6272 thread_t td;
d7f50089 6273
c8fe38ae
MD
6274 oldvm = lp->lwp_vmspace;
6275
6276 if (oldvm != newvm) {
a5fc46c9 6277 crit_enter();
4611d87f 6278 td = curthread;
a3a33e50 6279 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
c8fe38ae 6280 lp->lwp_vmspace = newvm;
4611d87f 6281 if (td->td_lwp == lp) {
c8fe38ae 6282 pmap = vmspace_pmap(newvm);
c07315c4 6283 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
cc694a4a 6284 if (pmap->pm_active_lock & CPULOCK_EXCL)
8c5af5b8 6285 pmap_interlock_wait(newvm);
c8fe38ae
MD
6286#if defined(SWTCH_OPTIM_STATS)
6287 tlb_flush_count++;
6288#endif
a86ce0cd 6289 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
4611d87f 6290 td->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
94c5f25a 6291 if (meltdown_mitigation && pmap->pm_pmlpv_iso) {
4611d87f
MD
6292 td->td_pcb->pcb_cr3_iso =
6293 vtophys(pmap->pm_pml4_iso);
6294 td->td_pcb->pcb_flags |= PCB_ISOMMU;
6295 } else {
6296 td->td_pcb->pcb_cr3_iso = 0;
6297 td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
6298 }
a86ce0cd 6299 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
4611d87f
MD
6300 td->td_pcb->pcb_cr3 = KPML4phys;
6301 td->td_pcb->pcb_cr3_iso = 0;
6302 td->td_pcb->pcb_flags &= ~PCB_ISOMMU;
a86ce0cd
MD
6303 } else {
6304 panic("pmap_setlwpvm: unknown pmap type\n");
6305 }
4611d87f
MD
6306
6307 /*
6308 * The MMU separation fields needs to be updated.
6309 * (it can't access the pcb directly from the
6310 * restricted user pmap).
6311 */
9e24b495 6312 {
fc921477
MD
6313 struct trampframe *tramp;
6314
6315 tramp = &pscpu->trampoline;
6316 tramp->tr_pcb_cr3 = td->td_pcb->pcb_cr3;
6317 tramp->tr_pcb_cr3_iso = td->td_pcb->pcb_cr3_iso;
6318 tramp->tr_pcb_flags = td->td_pcb->pcb_flags;
9e24b495 6319 tramp->tr_pcb_rsp = (register_t)td->td_pcb;
fc921477 6320 /* tr_pcb_rsp doesn't change */
4611d87f
MD
6321 }
6322
6323 /*
6324 * In kernel-land we always use the normal PML4E
6325 * so the kernel is fully mapped and can also access
6326 * user memory.
6327 */
6328 load_cr3(td->td_pcb->pcb_cr3);
c8fe38ae 6329 pmap = vmspace_pmap(oldvm);
c07315c4
MD
6330 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6331 mycpu->gd_cpuid);
c8fe38ae 6332 }
a5fc46c9 6333 crit_exit();
c8fe38ae 6334 }
c8fe38ae 6335}
d7f50089 6336
f9fa4782
AL
6337/*
6338 * Used to control the backing vmspace on the host for a guest VM.
6339 * The cpumask is needed by the host pager to properly invalidate the
6340 * host TLB when paging out the backing memory of a guest VM.
6341 *
6342 * NOTE: The scheduler might somtimes overload multiple vCPUs on the
6343 * same physical cpu, so operating is not quite as simple as
6344 * calling add_cpu/del_cpu in the core vmrun routines.
6345 */
6346void
6347pmap_add_cpu(struct vmspace *vm, int cpuid)
6348{
6349 ATOMIC_CPUMASK_ORBIT(vm->vm_pmap.pm_active, mycpu->gd_cpuid);
6350 crit_enter();
6351 pmap_interlock_wait(vm);
6352 crit_exit();
6353}
6354
6355void
6356pmap_del_cpu(struct vmspace *vm, int cpuid)
6357{
6358 ATOMIC_CPUMASK_NANDBIT(vm->vm_pmap.pm_active, mycpu->gd_cpuid);
6359}
6360
6361void
6362pmap_del_all_cpus(struct vmspace *vm)
6363{
6364 CPUMASK_ASSZERO(vm->vm_pmap.pm_active);
6365}
6366
c2fb025d 6367/*
9d8625eb
AHJ
6368 * Called when switching to a locked pmap, used to interlock against pmaps
6369 * undergoing modifications to prevent us from activating the MMU for the
6370 * target pmap until all such modifications have completed. We have to do
6371 * this because the thread making the modifications has already set up its
6372 * SMP synchronization mask.
6373 *
3cb318dc
MD
6374 * This function cannot sleep!
6375 *
9d8625eb 6376 * No requirements.
c2fb025d
MD
6377 */
6378void
6379pmap_interlock_wait(struct vmspace *vm)
6380{
6381 struct pmap *pmap = &vm->vm_pmap;
6382
cc694a4a 6383 if (pmap->pm_active_lock & CPULOCK_EXCL) {
9d8625eb 6384 crit_enter();
993bac44 6385 KKASSERT(curthread->td_critcount >= 2);
b12defdc 6386 DEBUG_PUSH_INFO("pmap_interlock_wait");
cc694a4a 6387 while (pmap->pm_active_lock & CPULOCK_EXCL) {
c2fb025d
MD
6388 cpu_ccfence();
6389 lwkt_process_ipiq();
6390 }
cfaeae2a 6391 DEBUG_POP_INFO();
b12defdc 6392 crit_exit();
c2fb025d
MD
6393 }
6394}
6395
d7f50089
YY
6396vm_offset_t
6397pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6398{
c8fe38ae 6399
f6a0c819
JH
6400 if ((obj == NULL) || (size < NBPDR) ||
6401 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
c8fe38ae
MD
6402 return addr;
6403 }
6404
965b839f 6405 addr = roundup2(addr, NBPDR);
c8fe38ae
MD
6406 return addr;
6407}
722871d3
MD
6408
6409/*
6410 * Used by kmalloc/kfree, page already exists at va
6411 */
6412vm_page_t
6413pmap_kvtom(vm_offset_t va)
6414{
9e5e1578
MD
6415 pt_entry_t *ptep = vtopte(va);
6416
9e5e1578 6417 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
722871d3 6418}
921c891e
MD
6419
6420/*
6421 * Initialize machine-specific shared page directory support. This
6422 * is executed when a VM object is created.
6423 */
6424void
6425pmap_object_init(vm_object_t object)
6426{
921c891e
MD
6427}
6428
6429/*
6430 * Clean up machine-specific shared page directory support. This
6431 * is executed when a VM object is destroyed.
6432 */
6433void
6434pmap_object_free(vm_object_t object)
6435{
921c891e 6436}
a7a03a5f
MD
6437
6438/*
6439 * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6440 * VM page and issue a pginfo->callback.
a7a03a5f
MD
6441 */
6442static
6443void
6444pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
567a6398
MD
6445 vm_pindex_t *pte_placemark,
6446 pv_entry_t pt_pv, vm_offset_t va,
6447 pt_entry_t *ptep, void *arg)
a7a03a5f
MD
6448{
6449 struct pmap_pgscan_info *pginfo = arg;
6450 vm_page_t m;
567a6398
MD
6451 pt_entry_t pte;
6452
6453 pte = *ptep;
6454 cpu_ccfence();
a7a03a5f 6455
567a6398 6456 if (pte & pmap->pmap_bits[PG_MANAGED_IDX]) {
a7a03a5f 6457 /*
567a6398 6458 * Try to busy the page while we hold the pte_placemark locked.
a7a03a5f
MD
6459 */
6460 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6461 if (vm_page_busy_try(m, TRUE) == 0) {
6462 if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6463 /*
567a6398 6464 * The callback is issued with the pt_pv
a7a03a5f
MD
6465 * unlocked.
6466 */
567a6398 6467 pv_placemarker_wakeup(pmap, pte_placemark);
76f1911e
MD
6468 if (pt_pv) {
6469 vm_page_wire_quick(pt_pv->pv_m);
a7a03a5f 6470 pv_unlock(pt_pv);
76f1911e 6471 }
a7a03a5f
MD
6472 if (pginfo->callback(pginfo, va, m) < 0)
6473 info->stop = 1;
76f1911e 6474 if (pt_pv) {
a7a03a5f 6475 pv_lock(pt_pv);
e3c330f0
MD
6476 if (vm_page_unwire_quick(pt_pv->pv_m)) {
6477 panic("pmap_pgscan: bad wire_"
6478 "count on pt_pv");
6479 }
76f1911e 6480 }
a7a03a5f 6481 } else {
da2da420 6482 vm_page_wakeup(m);
567a6398 6483 pv_placemarker_wakeup(pmap, pte_placemark);
a7a03a5f
MD
6484 }
6485 } else {
6486 ++pginfo->busycount;
567a6398 6487 pv_placemarker_wakeup(pmap, pte_placemark);
a7a03a5f 6488 }
a7a03a5f 6489 } else {
e989b548
MD
6490 /*
6491 * Shared page table or unmanaged page (sharept or !sharept)
6492 */
76f1911e 6493 pv_placemarker_wakeup(pmap, pte_placemark);
a7a03a5f
MD
6494 }
6495}
6496
6497void
6498pmap_pgscan(struct pmap_pgscan_info *pginfo)
6499{
6500 struct pmap_scan_info info;
6501
6502 pginfo->offset = pginfo->beg_addr;
6503 info.pmap = pginfo->pmap;
6504 info.sva = pginfo->beg_addr;
6505 info.eva = pginfo->end_addr;
6506 info.func = pmap_pgscan_callback;
6507 info.arg = pginfo;
6508 pmap_scan(&info, 0);
6509 if (info.stop == 0)
6510 pginfo->offset = pginfo->end_addr;
6511}
76f1911e
MD
6512
6513/*
6514 * Wait for a placemarker that we do not own to clear. The placemarker
2519e05d 6515 * in question is not necessarily set to the pindex we want, we may have
76f1911e 6516 * to wait on the element because we want to reserve it ourselves.
2519e05d
MD
6517 *
6518 * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6519 * PM_NOPLACEMARK, so it does not interfere with placemarks
6520 * which have already been woken up.
92414ddf
MD
6521 *
6522 * NOTE: This routine is called without the pmap spin-lock and so can
6523 * race changes to *pmark. Due to the sensitivity of the routine
6524 * to possible MULTIPLE interactions from other cpus, and the
6525 * overloading of the WAKEUP bit on PM_NOPLACEMARK, we have to
6526 * use a cmpset loop to avoid a race that might cause the WAKEUP
6527 * bit to be lost.
6528 *
6529 * Caller is expected to retry its operation upon return.
76f1911e
MD
6530 */
6531static
6532void
6533pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6534{
92414ddf
MD
6535 vm_pindex_t mark;
6536
6537 mark = *pmark;
6538 cpu_ccfence();
6539 while (mark != PM_NOPLACEMARK) {
2519e05d 6540 tsleep_interlock(pmark, 0);
92414ddf
MD
6541 if (atomic_fcmpset_long(pmark, &mark,
6542 mark | PM_PLACEMARK_WAKEUP)) {
2519e05d 6543 tsleep(pmark, PINTERLOCKED, "pvplw", 0);
92414ddf
MD
6544 break;
6545 }
76f1911e 6546 }
76f1911e
MD
6547}
6548
6549/*
6550 * Wakeup a placemarker that we own. Replace the entry with
6551 * PM_NOPLACEMARK and issue a wakeup() if necessary.
6552 */
6553static
6554void
6555pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6556{
6557 vm_pindex_t pindex;
6558
76f1911e 6559 pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
76f1911e
MD
6560 KKASSERT(pindex != PM_NOPLACEMARK);
6561 if (pindex & PM_PLACEMARK_WAKEUP)
6562 wakeup(pmark);
6563}